首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i= 1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2x2 +…+knf(xn).
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i= 1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2x2 +…+knf(xn).
admin
2020-03-10
51
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=
1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
x
2
+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/END4777K
0
考研数学三
相关试题推荐
设对任意的x,总有φ(x)≤f(x)≤g(x),且,则
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设A,B为两个n阶矩阵,下列结论正确的是().
设u=f(x+y,xz)有二阶连续的偏导数,则=().
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于________。
曲线段(如图所示)的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于()
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
求下列函数的导数与微分:设求
求f(arccosx)2dx.
随机试题
【B1】【B19】
有关胃空肠吻合术后输出袢梗阻的叙述中,下列哪项是错误的
学龄前期的分期特点,不正确的是
可能导致听神经障碍的药物包括()。
终身年金保险有下列()类型
学生通过学习直角、锐角,很快掌握钝角的概念,这是()。
资本家加速资本周转的目的是
我国历史上规模最大,也是历次土改运动中进行的最好的一次是()
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(I)(Ⅱ)
对关系模式进行规范化的目的是减少数据冗余,并避免出现【】、【】和【】。
最新回复
(
0
)