首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x1+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x1+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2020-03-10
107
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
1
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY,化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
1
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为 f=x
T
Ax 其中A=[*],所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE一A|=λ
3
一(a+4)λ
2
+(4a—b
2
+2)λ+(一3a一2b+2b
2
+2),所以有λ
3
一(a+4)λ
2
+(4a—b
2
+2)λ+(一3a一2b+2b
2
+2)=(λ一1)
2
(λ一4), 解得a=2,b=1.当λ
1
=λ
2
=1时,由(E—A)X=0得ξ
1
=[*]由λ
3
=4时,由(4E—A)X=0得ξ
3
=[*].显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gVD4777K
0
考研数学三
相关试题推荐
下列矩阵中,不能相似对角化的矩阵是()
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设函数f(x)连续,若F(u,υ)=其中区域Dνυ为图1—4—1中阴影部分,则
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设A,B皆为n阶矩阵,则下列结论正确的是().
设n阶矩阵A与B等价,则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
当x>0时,曲线y=xsin()
设函数f(x)在区间[1,+∞)上连续,若曲线y=f(x)与直线x=1,x=t(t>1)及x轴所围平面图形绕x轴旋转一周所得旋转体体积为,求f(x)满足的微分方程,并求满足初值的解。
随机试题
汇编权
基准轴和基准面根据与对象的关联性可分为_______和______。
聚证属寒湿中阻,气机壅滞者,宜选用
我国规定,不得参与放射工作的年龄限制为
在货物综合评估法评标因素的技术因素中,货物的()应作为评标的重要技术因素,评标中通常需要按照这些指标对货物设计寿命内运行成本的影响进行量化评价。
下列表述中,符合国务院财政部门预算管理职权规定的是()。
WHO推荐选用皮褶厚度的测量点不包括()。
简述喜歌剧。
某县酒店承包人章某(男,1964年12月生),因经营不善而严重亏损,遂产生了绑架勒索财物的主意。经考察,章某选定了本县个体户吴甲之子吴乙(7岁)为绑架对象,并对吴乙的活动规律进行了跟踪了解。2003年9月14日上午,章某对本酒店的服务员王某(女,1985年
求函数的单调区间与极值点,凹凸区间与拐点及渐近线.
最新回复
(
0
)