首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)可微,=-f(x,y),f(0,)=1,且=ecoty,求f(x,y).
设函数f(x,y)可微,=-f(x,y),f(0,)=1,且=ecoty,求f(x,y).
admin
2019-11-25
46
问题
设函数f(x,y)可微,
=-f(x,y),f(0,
)=1,且
=e
coty
,求f(x,y).
选项
答案
由[*]=e
coty
, 得[*]=coty,解得f(0,y)=Csiny. 由f(0,[*])=1,得C=1,即f(0,y)=siny. 又由[*]=-f(x,y),得lnf(x,y)=-x+lnφ(y), 即f(x,y)=φ(y)e
-x
,由f(0,y)=siny,得φ(y)=siny,所以f(x,y)=e
-x
siny.
解析
转载请注明原文地址:https://kaotiyun.com/show/4oD4777K
0
考研数学三
相关试题推荐
实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f,一f对应的矩阵合同,则必有()
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2为任意常数,则满足方程组①且满足条件x1=x2,x3=x4的解是_______.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程组AX=0的通解是_______.
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求:(1)EZ,DZ;(2)用切比雪夫不等式估计P{|Z|≥2}.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T(1)求方程组(I)的基础解系;(2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
设矩阵A=且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
设函数y(x)在(-∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(Ⅱ)求解变换后的微分方程的通解。
设D=则A31+A32+A33=________.
随机试题
牙嵌离合器是通过凸牙的啮合来传递转矩和运动的。()
某村村民吴某因家里人口多,住房紧张便向乡政府提出建房申请。经乡人民政府土地员刘某批准后,即开始划线动工。周围左邻申某与右邻崔某发现吴某占用了自己使用多年的宅基地,即同吴某交涉。吴某申辩说建房是按批准文件划线动工,不同意改变施工计划。据此请回答下列题目。
男性,26岁,5天来鼻及牙龈出血,皮肤淤斑。血红蛋白55g/L,白细胞10.0×109/L,血小板16×109/L。骨髓增生活跃,幼稚细胞占80%,胞浆有大小不等颗粒及成堆棒状小体,过氧化酶染色强阳性。本患者治疗首选
项目费用管理不包括( )子过程。
根据《公路工程标准施工招标文件》,在合同协议书签订后28天内,承包人应向监理工程师书面提交的文件有()。
下列施工中,属于既有建筑节能改造的主要内容是既有建筑的()。
运动员的竞技能力是由后天训练得来的,与先天遗传没有关系。()
Microeconomistsareonthemarch,winningtopawards,helpingbattlethecrisis,andadvisingtheworld’smostinnovativefirms.
要设计出带表格线的报表,需要向报表中添加()控件完成表格线的显示。
Divisionmanager:IwanttoreplacetheMicrotoncomputersinmydivisionwithVitechcomputers.Generalmanager:Why?Division
最新回复
(
0
)