首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P-1AP=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P-1AP=A.
admin
2018-09-20
27
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使得P
-1
AP=A.
选项
答案
(1)设 (E+αβ
T
)ξ=λξ. ① ①式两端左边乘β
T
得β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ. 若β
T
ξ≠0,则λ=1+β
T
α=3;若β
T
ξ=0,则由①式,λ=1. 当λ=1时,(E-A)X=一αβ
T
X=[*][b
1
,b
2
,…,b
n
]X=0,即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2, 故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,一b
1
]
T
,即A的对应于特征值1的特征向量为k
1
ξ+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
为不全为零的常数; 当λ=3时,(3E-A)X=(2E一αβ
T
)X=0,ξ
n
=α=[a
1
,a
2
,…,a
n
]
T
,即A的对应于特征值3的特征向量为k
n
ξ
n
,k
n
是不为零的常数. (2)由(1)可取可逆矩阵P=[ξ
1
,ξ
2
,…,ξ
n-1
,ξ
n
]=[*] 故P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MRW4777K
0
考研数学三
相关试题推荐
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时.求正交矩阵Q,使Q-1AQ=A.
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
已知α=(1,-2,2)T是二次型xTAx=ax12+4x22+bx32-4x1x2+4x1x3-8x2x3矩阵A的特征向量,求正交变换化二次型为标准形,并写出所用正交变换.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
随机试题
NK细胞具有的受体是
饮水加氟时适宜的氟浓度一般为
关于桥梁锚具静载锚固性能试验,请回答下列问题。锚具静载锚固性能试验用设备,一般由()组成。
某公司中标某沿海城市一栋办公楼工程,该公司进场后,对整个工程各工序进行划分,编制双代号时标网络图,并根据6月底、11月底进度检查实际情况,在网络图中标出两次检查的实际进度前锋线,如下图所示:在工程施工过程中发生以下事件:事件一:施工单
背景某闸室基础开挖是闸室分部工程中的一部分,其中右岸边墩基础开挖单元工程的质量评定表如表1F420170所示。问题计算“检测结果”中的各项数值。
债券市场价格越_____债券面值,期限越_____,则当期收益率就越偏离到期收益率。()
作为一种社会经济形态,商品经济的直接目的是()。
在单链表中,增加头结点的目的是
A、Thepsychologicalimmunesystem.B、Someman-madeconditions.C、Theoptimisticviewoftheworld.D、Thehumannature.A
Duringrecentyearswehaveheardmuchabout"race":howthisracedoescertainthingsandthatracebelievescertainthingsand
最新回复
(
0
)