首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P-1AP=A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. (1)求A的特征值和特征向量; (2)求可逆矩阵P,使得P-1AP=A.
admin
2018-09-20
60
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使得P
-1
AP=A.
选项
答案
(1)设 (E+αβ
T
)ξ=λξ. ① ①式两端左边乘β
T
得β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ. 若β
T
ξ≠0,则λ=1+β
T
α=3;若β
T
ξ=0,则由①式,λ=1. 当λ=1时,(E-A)X=一αβ
T
X=[*][b
1
,b
2
,…,b
n
]X=0,即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2, 故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,一b
1
]
T
,即A的对应于特征值1的特征向量为k
1
ξ+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
为不全为零的常数; 当λ=3时,(3E-A)X=(2E一αβ
T
)X=0,ξ
n
=α=[a
1
,a
2
,…,a
n
]
T
,即A的对应于特征值3的特征向量为k
n
ξ
n
,k
n
是不为零的常数. (2)由(1)可取可逆矩阵P=[ξ
1
,ξ
2
,…,ξ
n-1
,ξ
n
]=[*] 故P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MRW4777K
0
考研数学三
相关试题推荐
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时.求正交矩阵Q,使Q-1AQ=A.
设f(x),g(x)均为[0,T]上的连续可微函数,且f(0)=0,证明:
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,=-1.证明:
设齐次线性方程组只有零解,则a满足的条件是______.
随机试题
A.膈神经麻痹B.气胸C.二者均有D.二者均无(2003年第128题)臂丛神经阻滞锁骨上径路,可能发生的并发症有
目前临床上治疗慢性前列腺炎常用的药物包括
职务侵权行为是特殊的侵权行为,具有()的特征。
只有在生产可能性曲线与等收益线相切的切点上,边际转换率与等收益线的斜率相等,此时两种商品的数量组合是生产可能性曲线上可以获得最大销售收入的产量组合。()
FIDIC施工合同条件为了合理地分担风险责任,定义投标截止日期前第28天为“基准日”。从此日期起至()止的期间内,有经验承包商在投标阶段不能合理预见的风险归业主承担。
根据《2000通则》,DAF贸易术语()。
下列交易或事项中,属于经营活动现金流量的是()。
据有关报告显示,目前中国投入运营的共享汽车数量已经达到3万辆左右,预计未来五年汽车分时租赁市场车辆将以超过的增幅50%继续发展,到2020年,整体车队规模有望达到17万辆以上。假如下列论述为真,最能削弱上述结论的是()。
【2008-20】中国共产党领导下的抗日根据地中,以“团结、紧张、严肃、活泼”为校训的学校是()。
Aneweconomicspaperhassomeold-fashionedadviceforpeoplenavigatingthestressesoflife:Findaspousewhoisalsoyourb
最新回复
(
0
)