首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).
[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).
admin
2021-01-25
39
问题
[2014年] 设α
1
,α
2
,α
3
是三维向量,则对任意常数k,l,向量α
1
+kα
3
,α
2
+α
3
线性无关是向量α
1
,α
2
,α
3
线性无关的( ).
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
记β
1
=α
1
+kα
3
,β
2
=α
2
+lα
3
,则
若α
1
,α
2
,α
3
线性无关,则[α
1
,α
2
,α
3
]为可逆矩阵,故秩
即β
1
=α
1
+kα
3
,β
2
=α
2
+lα
3
线性无关.
反之,设α
1
,α
2
线性无关,α
3
=0,则对任意常数k,l必有α
1
+kα
3
,α
2
+lα
3
线性无关,但α
1
,α
2
,α
3
线性相关,故α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的必要但非充分条件.仅(A)入选.
转载请注明原文地址:https://kaotiyun.com/show/4wx4777K
0
考研数学三
相关试题推荐
在△ABC中任取一点P,而△ABC与△ABP的面积分别记为S与S1。若已知S1=12,求ES1。
证明:∫01dx∫01(xy)xydy=∫01xxdx.
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令写出(X,Y)的概率密度;
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αTi表示列向量αi的转置,i=1,2,…,n.
[2013年]设(X,Y)是二维随机变量,X的边缘概率密度为在给定X=x(0<x<1)的条件下,Y的条件概率密度为求Y的边缘概率密度fY(y);
(97年)设随机变量X的绝对值不大于1,P(X=-1)=,P(X=1)=.在事件{-1<X<1}出现的条件下,X在区间(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比.试求X的分布函数F(χ)=P(X≤χ).
[2011年]设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由.x-y=0,x+y=2与y=0所围成的三角形区域.求条件概率密度fX|Y(x|y).
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
任意一个三维向量都可以由α1=(1,0,1)T,α2=(1,一2,3)T,α3=(a,1,2)T线性表示,则a的取值为________。
下列命题中正确的是
随机试题
A.块根B.虫瘿C.菌核D.花粉E.孢子
五行调节事物整体动态平衡的机制是
患者,男性,72岁。8年前开始经常咳嗽、咳痰,近1年来症状加重,今晨排便时,突然出现气急,呼吸困难。查体:呼吸30次/分,口唇发绀,气管轻度右偏,桶状胸,左肺叩呈鼓音、呼吸音消失。急诊首先应进行下列哪项检查
A.桑菊饮B.麻杏石甘汤C.银翘散D.透疹凉解汤E.银翘散合养阴清肺汤奶麻邪郁肌表首选的方剂是
下列固定资产折旧方法中,属于加速折旧法的有()。
下列企业中,不属于我国法律规定实行安全生产许可制度的是()。
根据以下资料,回答下列题。据中消协和全国30个省、自治区、直辖市消费者协会(委员会、下同)的统计汇总,2008年共受理消费者投诉638477件,比2007年下降2.8%,解决607423件,为消费者挽回经济损失66168万元,比2007年下降21
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b一a)|f(x)g(x)dx.
下列关于空值的叙述中,正确的是()。
E
最新回复
(
0
)