首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
admin
2019-01-22
67
问题
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X
1
,X
2
,…,X
n
为取自总体X的简单随机样本,
,X
(n)
﹦max{X
1
,X
2
,…,X
N
}。
(I)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b使得
的数学期望均为θ,并求
。
选项
答案
总体X的密度函数和分布函数分别为 [*] (I)E(X)﹦[*],解得θ的矩估计量为[*]。 设x
1
,x
2
,…,x
n
是相应于样本X
1
,X
2
,…,X
n
的一个样本值,其似然函数为 [*] 则似然函数为θ的单调减函数,且0≤x
i
≤θ,所以θ要取不小于x
i
的一切值,则θ的最小取值为max{x
1
,x
2
,…,x
n
},θ的最大似然估计量[*]﹦max{X
1
,X
2
,…,X
n
}﹦X
(n)
。 (Ⅱ)[*] X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x)分别为 [*] 本题考查矩估计量和最大似然估计量的计算,以及方差的计算。
解析
转载请注明原文地址:https://kaotiyun.com/show/4yM4777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α0,α1,α2线性无关.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知ξ1=(1,1,一1,一1)T和ξ2=(1,0,一1,0)T是线性方程组的解,η=(2,一2,1,1)T是它的导出组的解,求方程组的通解.
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布;(Ⅱ)Y的边缘分布;(Ⅲ)在X=0条件下,关于Y的条件分布.
设随机变量X和Y相互独立,且X~N(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_____.
已知总体X的概率密度只有两种可能,设对X进行一次观测,得样本X1,规定当时拒绝H0,否则就接受H0,则此检验犯第一、二类错误的概率α和β分别为_______.
曲线在M0(1,1,2)处的切线方程为______,法平面方程为______.
计算曲面积分,其中∑为圆柱面x2+y2=R2界于z=0及z=H之间的部分,r为曲面上的点到原点的距离(H>0).
求下列平面上曲线积分,其中是沿椭圆正向从A(a,0)到(0,b)的一段弧,a≠1.
设y1(x)、y2(x)为二阶变系数齐次线性方程y″+p(x)y′+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
随机试题
赫茨伯格提出了()
我国慢性肾衰最常见的病因是
球结膜下水肿可见于()
下列物质中酸性最弱的是()。
除去金属表面上的油脂、铁锈、氧化皮等杂物,允许有紧附的氧化皮、锈蚀产物或旧漆存在的除锈质量等级属于()标准。
用户用电申请内容包括:用电申请书的审核、供电条件勘查、供电方案确定及批复、有关费用收取、()、供用电合同(协议)签约、装表接电等项业务。
某国政府向本国居民借债,以解决临时性需要,这种信用形式为()。
和解协议对债务人的保证人有效。()
第一个事实:电视广告的效果越来越差,一项跟踪调查显示,在电视广告所推出的各种商品中,观众能够记住其品牌名称的商品的百分比逐年降低。第二个事实:在一段连续插播的电视广告中,观众印象较深的是第一个和最后一个,而中间播出的广告留给观众的印象,一般地说要浅得多。以
Scienceisawayofthinkingmuchmorethanitisabodyofknowledge.(46)Itsgoalistofindouthowtheworldworks,toseek
最新回复
(
0
)