首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
admin
2019-01-22
54
问题
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X
1
,X
2
,…,X
n
为取自总体X的简单随机样本,
,X
(n)
﹦max{X
1
,X
2
,…,X
N
}。
(I)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b使得
的数学期望均为θ,并求
。
选项
答案
总体X的密度函数和分布函数分别为 [*] (I)E(X)﹦[*],解得θ的矩估计量为[*]。 设x
1
,x
2
,…,x
n
是相应于样本X
1
,X
2
,…,X
n
的一个样本值,其似然函数为 [*] 则似然函数为θ的单调减函数,且0≤x
i
≤θ,所以θ要取不小于x
i
的一切值,则θ的最小取值为max{x
1
,x
2
,…,x
n
},θ的最大似然估计量[*]﹦max{X
1
,X
2
,…,X
n
}﹦X
(n)
。 (Ⅱ)[*] X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x)分别为 [*] 本题考查矩估计量和最大似然估计量的计算,以及方差的计算。
解析
转载请注明原文地址:https://kaotiyun.com/show/4yM4777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α0,α1,α2线性无关.
已知ξ1=(1,1,一1,一1)T和ξ2=(1,0,一1,0)T是线性方程组的解,η=(2,一2,1,1)T是它的导出组的解,求方程组的通解.
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布;(Ⅱ)Y的边缘分布;(Ⅲ)在X=0条件下,关于Y的条件分布.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A一bE)=0.(2)r(A一aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
A,B都是n阶矩阵,并且B和E+AB都可逆,证明:B(E+AB)-1B-1=E一B(E+AB)-1A.
已知平面Ⅱ:x一4y+2z+9=0,直线,试求在平面Ⅱ内,经过L与Ⅱ的交点且与L垂直的直线方程.
计算曲面积分,I=(x+y+z)dS,其中∑为左半球:x2+y2+z2=R2,y≤0.
计算下列三重积分或将三重积分化成累次积分I=x3y2zdV,其中Ω是由x=1,x=2,y=0,y=x2,z=0及z=所围成的区域.
设二维随机变量(X,Y)在区域D={(X,Y)|0≤y≤1,Y≤x≤Y+l}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
微分方程y"一3y’+2y=2ex满足的特解为_______.
随机试题
2017年年初,甲公司与乙银行签订一份协议,约定甲公司一旦发生特定事件引起财务危机时,有权从乙银行取得500万贷款来应对风险。在协议中,双方明确了甲公司归还贷款的期限以及获得贷款应当支付的利息和费用。针对甲公司采取的措施,下列各项中表述正确的有(
高温掺合阀TV05106的作用是调节制硫燃烧炉出口工艺气的温度确保一级转化器入口温度正常。
A.化生B.机化C.分化D.再生组织细胞从胚胎期不成熟细胞到正常成熟细胞的生长发育过程
大量输入生理盐水治疗等渗性脱水可导致
低分子右旋糖酐抵克力得
表证和里证的鉴别要点为()
原告蒋发与被告高金于2007年3月8日经法院判决离婚后,属双方共有的位于河池市某局的一套房改房和位于河池市江北路的一栋五层楼房在判决中没有分割处,双方离婚一直也没有对共有房屋自行协商分割处理。原、被告于2007年3月8日离婚后至2007年11月间,原告蒋发
商业银行操作风险即是金融欺诈和金融犯罪。()
下列关于北京故宫保和殿的叙述中,正确的是()。
软件测试的目的是尽可能发现软件中错误,通常【】是在代码编写阶段可进行的测试,它是整个测试工作的基础。
最新回复
(
0
)