首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
admin
2019-01-22
53
问题
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X
1
,X
2
,…,X
n
为取自总体X的简单随机样本,
,X
(n)
﹦max{X
1
,X
2
,…,X
N
}。
(I)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b使得
的数学期望均为θ,并求
。
选项
答案
总体X的密度函数和分布函数分别为 [*] (I)E(X)﹦[*],解得θ的矩估计量为[*]。 设x
1
,x
2
,…,x
n
是相应于样本X
1
,X
2
,…,X
n
的一个样本值,其似然函数为 [*] 则似然函数为θ的单调减函数,且0≤x
i
≤θ,所以θ要取不小于x
i
的一切值,则θ的最小取值为max{x
1
,x
2
,…,x
n
},θ的最大似然估计量[*]﹦max{X
1
,X
2
,…,X
n
}﹦X
(n)
。 (Ⅱ)[*] X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x)分别为 [*] 本题考查矩估计量和最大似然估计量的计算,以及方差的计算。
解析
转载请注明原文地址:https://kaotiyun.com/show/4yM4777K
0
考研数学一
相关试题推荐
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A一bE)=0.(2)r(A一aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
计算曲面积分,I=(x+y+z)dS,其中∑为左半球:x2+y2+z2=R2,y≤0.
求下列曲面积分I=(x2一y2)dzdx+(y2一z2)dzdx+(z2一x2)dxdy,S是的上侧.
求下列曲面积分,其中∑为由区面y=x2+z2与平面y=1,y=2所围立体表面的外侧.
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设y’’一3y’+ay=一5e-x的特解形式为Axe-x,则其通解为_______.
微分方程y"一3y’+2y=2ex满足的特解为_______.
方程y″-2y′+3y=exsin(x)的特解的形式为
随机试题
内脏损伤后,防治休克的措施是
患者,男,42岁。患慢性阑尾炎3年,经常反复发作,发时右下腹隐隐疼痛,痛处固定不移,腹皮微急,伴轻度恶心欲吐,便干溲黄,舌苔薄黄,脉弦。治疗应首选( )。
招标投标制度在大胆探索和创立时期具有的特点包括()。
折旧率随着使用年限的变化而变化的固定资产折旧计算方法是()。
飞机库的每个防火分区至少应有两个直通室外的安全出口,其最远工作地点到安全出口的距离不应大于()m。
关于奥肯定律的含义和作用的说法,正确的有()。
学校开展各类活动的最基本的基础组织是()。
在法国小学用汉语教数学体现了沉浸式外语教学的理念.()
简述新闻价值的五要素。(四川大学2014年研)相关试题:(1)怎样理解新闻价值要素中的“重要性”?请结合一些典型新闻报道举例说明。(中山大学2015年研)(2)简述新闻价值构成要素。(广西大学2018年研;中南财大2010年研;厦门大学2009年研)
Smallbusinessownersmustaccepttheburdensofentrepreneurship.Beinginbusinessforyour-selfrequiresyourfullattention
最新回复
(
0
)