首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X1,X2,…,Xn为取自总体X的简单随机样本,,X(n)﹦max{X1,X2,…,XN}。 (I)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b使得的数学期望均为θ,并求。
admin
2019-01-22
41
问题
设总体X服从区间[0,θ]上的均匀分布,其中θ是未知参数,X
1
,X
2
,…,X
n
为取自总体X的简单随机样本,
,X
(n)
﹦max{X
1
,X
2
,…,X
N
}。
(I)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b使得
的数学期望均为θ,并求
。
选项
答案
总体X的密度函数和分布函数分别为 [*] (I)E(X)﹦[*],解得θ的矩估计量为[*]。 设x
1
,x
2
,…,x
n
是相应于样本X
1
,X
2
,…,X
n
的一个样本值,其似然函数为 [*] 则似然函数为θ的单调减函数,且0≤x
i
≤θ,所以θ要取不小于x
i
的一切值,则θ的最小取值为max{x
1
,x
2
,…,x
n
},θ的最大似然估计量[*]﹦max{X
1
,X
2
,…,X
n
}﹦X
(n)
。 (Ⅱ)[*] X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x)分别为 [*] 本题考查矩估计量和最大似然估计量的计算,以及方差的计算。
解析
转载请注明原文地址:https://kaotiyun.com/show/4yM4777K
0
考研数学一
相关试题推荐
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=一k(k≠0),并且(一1,1,1)T和(1,1,一1)T都是解,求此方程组的通解.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
设总体X服从正态分布N(μ,σ2),其中σ2为已知,则当样本容量n一定时,总体均值μ的置信区间长度l增大,其置信度1一α的值
设二维连续型随机变量(X,Y)的联合概率密度为(I)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为求EY.
求下列空间中的曲线积分I=yzdx+3zxdy—xydz,其中L是曲线且顺着x轴的正向看是沿逆时针方向.
求下列曲面积分I=(x2一y2)dzdx+(y2一z2)dzdx+(z2一x2)dxdy,S是的上侧.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
如何判断鼓风机电阻丝故障?
下列诗句中,运用互文手法的是()
患者,男,34岁。体温骤升至39℃,持续4天后骤降至正常水平,发热与体温正常各持续4~5天即交替一次,应考虑的疾病是
患者,女性,48岁,理发员。下肢酸胀、沉重5年,活动或休息后减轻。体检见小腿内侧有蚓状团块,足靴区有色素沉着。目前患者最主要的护理诊断是
建设工程规划管理的主要内容包括()。
国家“十一五”科学技术发展规划中的总体指导思想正确的是()。
自我意识发展的第一个飞跃表现为()。
案例:阅读以下教学设计,完成问题。环节一创设情境,导入新课师:闻一多先生曾这样评价《春江花月夜》,说它是“诗中的诗,顶峰上的顶峰”,可见此诗的艺术成就之高,今天我们就和着悠扬的旋律,精美的画面走进《春江花月夜》,来感受一下它
有如下程序:PrivateSubForm_Click()DimiAsInteger,a(10)AsIntegerDimp(3)AsIntegerk=5Fori=0To10a(i)=iNextiFori=0To2
A、Thetwelfth.B、Thethirteenth.C、Thefourteenth.D、Thefifteenth.A男士说,根据记录,女士预订的房间是13号,但女士马上纠正,订的是今晚,不是明晚。由此可以推断今天是12号,是女士预订的
最新回复
(
0
)