首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=一k(k≠0),并且(一1,1,1)T和(1,1,一1)T都是解,求此方程组的通解.
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=一k(k≠0),并且(一1,1,1)T和(1,1,一1)T都是解,求此方程组的通解.
admin
2017-08-07
47
问题
设线性方程组为
(1)讨论a
1
,a
2
,a
3
,a
4
取值对解的情况的影响.
(2)设a
1
=a
3
=k,a
2
=a
4
=一k(k≠0),并且(一1,1,1)
T
和(1,1,一1)
T
都是解,求此方程组的通解.
选项
答案
(1)增广矩阵的行列式是一个范德蒙行列式,其值等于 [*]=(a
2
—a
1
)(a
3
—a
1
)(a
4
一a
1
)(a
3
—a
2
)(a
4
—a
2
)(a
4
—a
3
). 于是,当a
1
,a
2
,a
3
,a
4
两两不同时,增广矩阵的行列式不为0,秩为4,而系数矩阵的秩为3.因此,方程组无解. 如果a
1
,a
2
,a
3
,a
4
不是两两不同,则相同参数对应一样的方程.于是只要看有几个不同,就只留下几个方程. ①如果有3个不同,不妨设a
1
,a
2
,a
3
两两不同,a
4
等于其中之一,则可去掉第4个方程,得原方程组的同解方程组 [*] 它的系数矩阵是范德蒙行列式,值等于(a
2
一a
1
)(a
3
一a
1
)(a
3
—a
2
)≠0,因此方程组唯一解. ②如果不同的少于3个,则只用留下2个或1个方程,此时方程组无穷多解. (2)此时第3,4两个方程分别就是第l,2方程,可抛弃,得 [*] (一1,1,1)
T
和(1,1,一1)
T
都是解,它们的差(一2,0,2)
T
是导出组的一个非零解.本题未知数个数为3,而系数矩阵 [*] 的秩为2(注意k≠0).于是(一2,0,2)
T
构成导出组的基础解系,通解为: (一1,1,1)
T
+c(一2,0,2)
T
,c可取任意常数
解析
转载请注明原文地址:https://kaotiyun.com/show/zsr4777K
0
考研数学一
相关试题推荐
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
函数u=x2-2yz在点(1,-2,2)处的方向导数量大值为__________.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1与S2之间的立体体积.
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求a的值;
(2004年试题,三)设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
(2006年试题,20)已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.求(X1,X2)的联合分布;
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).写出所有可能结果构成的样本空间Ω;
随机试题
属我国法定三级医疗事故的是
吗啡易被氧化变色是由于分子结构中含有以下哪种基团
血友病患者必须拔牙时,首要的处理原则是操作轻柔,减少创伤,缝合拔牙创。()
对于大型排水混凝土构筑物,后浇带设置时,要遵循()的原则。
资金来源按企业承担的风险和付出的成本高低可分为( )。
下列选项中,表述正确的是()。
当国家为弥补财政赤字而导致银行信用投放增加时,货币供应量()。
根据下列给定材料,结合相关法律规定,回答问题。甲县公安局在处理一起打架斗殴案件中,根据被害人张某口头提供的有关受伤情况的证据,对加害人王某作出行政拘留15天的处罚决定。被处罚人王某对此不服,向上级公安机关市公安局申请复议。市公安局在复议过程发现仅
Optimismiscontagious,andonegoodwaytodevelopawinner’sattitudeistoworkforsomeonewhohasit.
曾几何时,由于技术所限,人类眼中的海洋只是邻近的一方水域:随着造船技术的提高和海上罗盘的使用,人类进人地理大发现时代,视野投向更广阔的海域;而今,借助载人深潜器、大洋钻探船等高新技术设备,深海世界的神秘面纱逐步被揭开。这表明
最新回复
(
0
)