首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知=2x+y+1,=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。
已知=2x+y+1,=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。
admin
2019-01-19
114
问题
已知
=2x+y+1,
=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。
选项
答案
由[*]=2x+y+1,有u(x,y)=x
2
+xy+x+φ(y),再结合[*]=x+2y+3,有x+φ'(y) =x+2y+3,得 φ'(y)=2y+3,φ(y)=y
2
+3y+C。 于是 u(x,y)=x
2
+xy+x+y
2
+3y+C。 又由u(0,0)=1得C=1,因此u(x,y)=x
2
+xy+y
2
+x+3y+1。 由[*] [*]=2>0. 所以u[*]为极小值。
解析
转载请注明原文地址:https://kaotiyun.com/show/56P4777K
0
考研数学三
相关试题推荐
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T.(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_______.
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
已知ξ=是矩阵A=的一个特征向量.(1)试求a,b的值及毒所对应的特征值,(2)问A能否相似于对角矩阵?说明理由.
已知矩阵A=的特征值有重根,判断A能否相似对角化,并说明理由.
设求f(x)的极值.
随机试题
企业再造的程序与要求。
音哑的主要病机是
梁板预制完成后,移梁前应对梁板喷涂统一标识和编号,标识内容包括()。
基金管理人整改后,中国证监会经验收符合有关要求的,应当自验收完毕之日起()内解除对其采取的有关措施。
当劳动力供给曲线不变,而劳动力需求曲线右移时,则()。
根据《国务院办公厅关于加强旅游市场综合监管的通知》规定,购物店要自觉抵制商业贿赂。()
肌肉萎缩症是一种损坏人体肌肉的遗传性疾病。由于身体无法制造支撑肌肉结构的蛋白质,患者会变得无法运动。目前几乎没有有效的治疗方法。而日本研究人员最新发现,添加“miR-195”和“miR-497”这两种小核糖核酸的骨骼肌干细胞被植入患有肌肉萎缩症的动物体内,
Languagemeansthatwehaveself-consciousness,whichmakesusauniquespeciesabletocontrolourselvesandourenvironmentsi
使用专用I/O指令为每个外围设备I/O接口中的有关寄存器分配I/O端口地址,此方式称为( )。
下列关于捕获异常的描述中,错误的是______。
最新回复
(
0
)