首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)= (I)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点; (Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数; (Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设f(x)= (I)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点; (Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数; (Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
admin
2017-08-18
35
问题
设f(x)=
(I)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点;
(Ⅲ)令x
n
=
,考察f’(x
n
)是正的还是负的,n为非零整数;
(Ⅳ)证明:对
δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
选项
答案
(I)当x≠0时按求导法则得 [*] 当x=0时按导数定义得 [*] (II)由于f(x)一f(0)=一x
2
(2+sin[*])<0(x≠0),即f(x)<f(0),于是由极值的定义可知x=0是f(x)的极大值点. (III)令x
N
=[*](N=±1,±2,±3,…),则sin[*]=0,cos[*]=(一1)
n
,于是 [*] (Ⅳ)对[*]δ>0,当n为[*]负奇数且|n|充分大时x
n
∈(一δ,0),f’(x
n
)<0[*]f(x)在(一δ,0)不单调上升;当n为正偶数且n充分大时x
n
∈(0,δ),f’(x
n
)>0[*]f(x)在(0,δ)不单调下降.
解析
转载请注明原文地址:https://kaotiyun.com/show/56r4777K
0
考研数学一
相关试题推荐
证明下列命题:设u(x,y),v(x,y)定义在全平面上,且满足则u(x,y),v(x,y)恒为常数.
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求r(A);
设正项级数收敛,正项级数发散,则①必收敛.②必发散.③必收敛.④必发散.中结论正确的个数为()
当x→1时,函数的极限().
设x>0时,∫x2f(x)dx=arcsinx+C,F(x)是f(x)的原函数,满足F(1)=0,则f(x)=_______.
设A,B为两个随机事件,则=_________.
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________。
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为__________.
随机试题
Althoughheroesmaycomefromdifferentcultures,they______.Accordingtothepassage,heroesarecomparedtohigh-voltagetr
产褥感染的病理及临床表现,以下哪项错误
某工程施工招标,招标代理机构负责在开标现场接收投标文件。在下列情形中,招标代理机构可以拒绝接收投标文件的是()。
理想液体流经管道突然放大断面时,其测压管水头线()。
回答关于生命科学发展史的问题:在遗传物质的探索历程中,1944年艾弗里在格里菲斯实验的基础上,通过实验找出了导致细菌转化的“转化因子”,1952年赫尔希和蔡斯则完成了“噬菌体侵染细菌的实验”,他们的实验中共同、核心的设计思路是________。
设可导函数f(x)定义在[a,b]上,点x∈[a,b]的导数的几何意义是()。
①第一本防水平装书还将拥有强大的防伪功能②澳大利亚的银行现在已经使用该项技术来延长纸币的使用寿命,同时减少伪造的风险③英国出版商近日透露,世界上第一本防水平装书有望明年夏天上架销售④书的外面还有一层防撕毁的坚韧的聚合物涂层,整本书的架上寿命可以由此增
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=5,f’(4)=6,则g’(4)等于().
WhendidthewomandecidetolearnPhotography?
Whichofthefiguresbelowthelineofdrawingsbestcompletestheseries?
最新回复
(
0
)