首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,二)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数尼,必有( ).
(2002年试题,二)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数尼,必有( ).
admin
2014-06-15
61
问题
(2002年试题,二)设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数尼,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
由题设,β
1
可由α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,β
1
,线性相关,在C中取k=0,则可看出C不正确;又由β
3
不能由α
1
,α
2
,α
3
线性表示且α
1
,α
2
,α
3
线性无关知,α
1
,α
2
,α
3
,β
2
线性无关,在B中取k=0,可看出B不正确;关于A,矩阵(α
1
,α
2
,α
3
,kβ
1
+β
2
)可α
1
,α
2
,α
3
通过初等列变换化为(α
1
,α
2
,α
3
,β
2
),则该矩阵秩为4,所以α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,所以A正确;关于D,同样可将矩阵(α
1
,α
2
,α
3
,β
1
+kβ
2
)化为(α
1
,α
2
,α
3
,kβ
2
),当k=0时,矩阵的秩为3,则α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关,当k≠0时矩阵秩为4,此时α
1
,α
2
,α
3
,β
1
+kβ
2
:线性无关,所以D不正确,综上,选A.
转载请注明原文地址:https://kaotiyun.com/show/5D34777K
0
考研数学二
相关试题推荐
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,n),用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xn。设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,kn应取何值,才能在使用估计θ时,θ无偏
设D是由曲线与直线y=x围成,则=________。
设A为三阶实对称矩阵,,矩阵A有一个二重特征值且rA=2。(Ⅰ)求常数a,b的值;(Ⅱ)用正交变换法化二次型XTAX为标准形。
设可微函数f(x)满足关系式求f(0)与f(x).
设函数在x=0可导,求常数a和b的值.
方程y′+ay=b(a,b为常数,且a≠0)的通解为_________.
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
(2009年试题,三(22))设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2007年试题,一(10))设矩阵则A与B().
随机试题
人民警察使用武器造成人员伤亡的,应当立即向其所属公安机关报告,也可以向当地公安机关报告。
下列脂肪降解和氧化产物可以转化为糖的有
久病患者。纳食减少,疲乏无力,腹部胀满。但时有缓减,腹痛而喜按,舌胖嫩而苔润,脉细弱而无力。其病机是
疼痛的发作方式属于病史中的
从发展战略到对城市的开发控制,要经过一系列的环节,实施性发展规划才是控制城市开发直接依据。属于实施性发展规划的有:
下列选项中,属于宏观调控权的有()。
2001年7月,北京某国内旅行社组织接待了从外地来北京旅游的一个的团队,在参观游览过程中,作为地陪的高某为了节省时间并增加计划以外的游览项目,私自减少了两个计划景点,并一再对客人说,大家到北京来一次不容易,既然来了就应多看一些景点。在征得大多数客人同意并对
A.尿比重明显增加B.尿量明显减少C.两者都有D.两者都无一次饮0.9%盐水1000ml,可导致
村民李某,为了泄愤报复,多次破坏武装部队的军事飞机场的灯塔。由于被及时发现并抢修,并没有造成严重后果。对李某的行为应认定为()。
个体提高自我价值的过程,就是
最新回复
(
0
)