首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,二)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数尼,必有( ).
(2002年试题,二)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数尼,必有( ).
admin
2014-06-15
59
问题
(2002年试题,二)设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数尼,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
由题设,β
1
可由α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,β
1
,线性相关,在C中取k=0,则可看出C不正确;又由β
3
不能由α
1
,α
2
,α
3
线性表示且α
1
,α
2
,α
3
线性无关知,α
1
,α
2
,α
3
,β
2
线性无关,在B中取k=0,可看出B不正确;关于A,矩阵(α
1
,α
2
,α
3
,kβ
1
+β
2
)可α
1
,α
2
,α
3
通过初等列变换化为(α
1
,α
2
,α
3
,β
2
),则该矩阵秩为4,所以α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,所以A正确;关于D,同样可将矩阵(α
1
,α
2
,α
3
,β
1
+kβ
2
)化为(α
1
,α
2
,α
3
,kβ
2
),当k=0时,矩阵的秩为3,则α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关,当k≠0时矩阵秩为4,此时α
1
,α
2
,α
3
,β
1
+kβ
2
:线性无关,所以D不正确,综上,选A.
转载请注明原文地址:https://kaotiyun.com/show/5D34777K
0
考研数学二
相关试题推荐
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,n),用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xn。设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,kn应取何值,才能在使用估计θ时,θ无偏
设f(t)=arctan(1+x2+y2)dxdy,则f(t)/(et-1-t)为()。
设X~E(λ),Y~E(λ)且X,Y相互独立,Z=min{X,Y},则P{Z>E(Z)}=________。
区域D由y=与x轴围成,则区域D绕x=3旋转而成的几何体的体积为V=________。
设连续函数f(x)满足求
设随机变量X,Y独立,且X~E(1/2),Y的概率密度为fY(y)=则D(XY)=________。
设随机变量X的概率密度为[x]表示不超过x的最大整数,则P{X+[X]<2}=________.
设f(x)满足f’(x)+f(x)=ne-xcosnx,n为正整数,f(0)=0.设an=∫02πf(x)dx,求级数的和.
(2002年试题,一)矩阵的非零特征值是__________.
证明,,其中n为自然数.
随机试题
按计价方式划分合同形式,一般分为()。
某造纸企业为应对桉树原料堆场、原料切片车间、碱回收锅炉车间、烘干车间以及发电机组车间发生的突发事件,制定了相应的应急预案。根据有关规定,关于该企业应急管理工作的说法,正确的有()。
出口信贷主要类型包括( )。
会计核算软件应当按照国家统一的会计制度的规定(),分期结算账目和编制会计报表。
根据《海关法》第五十六条至五十八条的规定,关税的减免分为()
甲公司采用销售百分比法预测资金需要量,预计2012年的销售收入为7200万元,预计销售成本、销售费用、管理费用、财务费用占销售收入的百分比分别为78%、1.2%、14.6%、0.7%,适用企业所得税税率为25%。若甲公司2012年计划股利支付率为60%,则
1,4,3,1,,()
在中央银行与政府的关系中,美国联邦储备系统是独立性较大的模式的典范,试从联储的结构及运行机制上对其独立性进行讨论。
Amongthelowestofthejudicialranks,justicesofthepeaceneverthelessfrequentlyexercisejurisdictionoveravarietyofmi
远期交易的履约方式主要是对冲平仓,也可采用实物交收方式。()
最新回复
(
0
)