首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: 存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξ)+f(ξi)=0(i=1,2);
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: 存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξ)+f(ξi)=0(i=1,2);
admin
2019-11-25
51
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:
存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f’(ξ)+f(ξ
i
)=0(i=1,2);
选项
答案
令h(x)=e
x
f(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ
2
)=0,而h’(x)=e
x
[f’(x)+f(x)]且e
x
≠0,所以f’(ξ
i
)+f(ξ
i
)=0(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/5ED4777K
0
考研数学三
相关试题推荐
[*]
讨论方程axex+b=0(a>0)实根的情况.
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T(1)求方程组(I)的基础解系;(2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
已知方程组(I)及方程组(Ⅱ)的通解为k1[一1,1,1,0]T+k2[2,一1,0,1]T+[一2,一3,0,0]T.求方程组(I),(Ⅱ)的公共解.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
设f(x)=x3+4x2一3x-1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
函数y=xx在区间上()
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设f(x)在闭区间[1,2]上可导,证明:存在ξ∈(1,2),使f(2)一2f(1)=ξf’(ξ)一f(ξ).
设随机变量X的概率密度为则随机变量X的二阶原点矩为_______.
随机试题
或移迁,无不活,且硕茂蚤实以蕃。(《种树郭橐驼传》)
王老师在小学语文课上,结合课文内容用生动形象的语言给学生描绘了深秋层林尽染、色彩斑斓的山林风光。这体现的教学原则是()
根据《贷款通则》的规定,对借款人的限制不包括()。
下列各项不属于企业风险管理要素的是()。
下列考核指标中,可以使业绩评价与企业的目标协调一致,又可使用不同的风险调整资本成本的是()。
甲公司以及与甲公司发生交易的以下公司均为增值税一般纳税人,销售或进口货物适用的增值税税率均为17%,以下事项中销售价格均不含增值税。甲公司2×16年发生如下经济业务:(1)1月1日,甲公司与乙公司签订协议,向乙公司销售商品,成本为90万元,增值税专用发票
将财政支出分为一般公共服务支出、国防支出、公共秩序和安全支出、环境保护支出等,是按财政支出()所做的分类。
腮腺鞘(parotidcapsule)
Whatarethesepeopleplanningtodo?
A、Theyinvitedhimtoaparty.B、Theyaskedhimtomakeaspeech.C、Theygaveaspecialdinnerforhim.D、Theyinvitedhiswife
最新回复
(
0
)