首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
admin
2019-07-22
50
问题
设向量α
1
,α
2
,…,α
n-1
是n—1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…,α
n-1
均正交的n维非零列向量。证明:
ξ
1
,ξ
2
线性相关;
选项
答案
令A=(α
1
,α
2
,…,α
n-1
)
T
,则A是(n一1)×n矩阵,且r(A)=n一1。由已知条件可知 α
i
ξ
j
T
=0(i=1,2,…,n一1;j=1,2),即Aξ
j
=0(j=1,2),这说明ξ
1
,ξ
2
是齐次线性方程组Ax=0的两个解向量。但Ax=0的基础解系中所含向量的个数为 n—r(A)=n一(n一1)=1,所以解向量ξ
1
,ξ
2
必定线性相关。
解析
转载请注明原文地址:https://kaotiyun.com/show/5FN4777K
0
考研数学二
相关试题推荐
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2χ-y)+g(χ,χy),求
设f(χ)=,求∫01f(χ)dχ.
求摆线(0≤t≤2π)的长度.
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,冥中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则=()
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设A=E-ααT,其中α为n维非零列向量.证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
随机试题
滑块卡瓦打捞矛卡瓦表面热处理后,处理层深度为5~9mm。()
谈论梅子驯起唾液分泌是()
“吃不到葡萄说葡萄酸”这种心理防御机制称为_______。
A.出现进行性气短B.X线胸片示“蓬发状心影”C.锥体外系神经障碍表现如肌张力增加D.神经衰弱综合征,牙龈出血,手指颤抖E.神经、消化、造血系统改变,无牙龈出血慢性汞中毒的特点是()
产妇,27岁。因子宫收缩过强,出现急产,对于其新生儿正确的护理措施是
在操作系统中,文件治理的主要功能是()
对MSN常规选项进行设置,使登录到Windows时自动运行Messenger(R),联系人联机时显示通知,收到电子邮件时通知我。
某人的电子邮箱为Rjspks@163.com,对于Rjspks和163.com的正确理解为(33),在发送电子邮件时,常用关键词使用中,(34)是错误的。若电子邮件出现字符乱码现象,以下方法中(35)一定不能解决该问题。
ViennaViennawasoneofthemusiccentersofEuropeduringtheclassicalperiod,andHaydn,Mozart,andBeethovenwereall
Theproblemofchildrenviolencehasbeendiscussedthoroughlyinthewakeoflastweek’stragedyinArkansas.Somediscussions
最新回复
(
0
)