首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
admin
2019-07-22
48
问题
设向量α
1
,α
2
,…,α
n-1
是n—1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…,α
n-1
均正交的n维非零列向量。证明:
ξ
1
,ξ
2
线性相关;
选项
答案
令A=(α
1
,α
2
,…,α
n-1
)
T
,则A是(n一1)×n矩阵,且r(A)=n一1。由已知条件可知 α
i
ξ
j
T
=0(i=1,2,…,n一1;j=1,2),即Aξ
j
=0(j=1,2),这说明ξ
1
,ξ
2
是齐次线性方程组Ax=0的两个解向量。但Ax=0的基础解系中所含向量的个数为 n—r(A)=n一(n一1)=1,所以解向量ξ
1
,ξ
2
必定线性相关。
解析
转载请注明原文地址:https://kaotiyun.com/show/5FN4777K
0
考研数学二
相关试题推荐
设f(χ,y)=讨论函数f(χ,y)在点(0,0)处的连续性与可偏导性.
z=f(χy)+yg(χ2+y2),其中f,g二阶连续可导,则=_______.
求摆线(0≤t≤2π)的长度.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
证明不等式:χarctanχ≥ln(1+χ2).
函数f(x)=ex+e-x在区间(-1,1)内[].
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设f(x)=3x2+Ax-3(x>0).A为正常数,问A至少为多少时f(x)≥20?
随机试题
车床的长丝杠是用来车削()的。
一般油气藏中均存在游离气,如果油气藏中没有游离气体,则圈闭中最凸起的地带为()。
悬浮聚合体系一般由单体、水、分散剂、引发剂组成。()
下述描述不符合遗传性肿瘤的特点的是
A.右肺水平裂外侧部上移B.侧位呈底向前胸壁、尖指向肺门的三角形阴影C.正位片底向膈面、尖指向肺门的三角形影D.纵隔向健侧移位E.斜裂向前上方移位右肺下叶不张的X线表现为
目前最常用的制作种植体的材料为
治疗慢性粒细胞性白血病之阴虚内热证,应首选
下列属于行政合同的是()。
【2015.辽宁鞍山】在知觉过程中,人们力求根据已有知识经验对知觉对象作出某种解释,使其具有一定意义,即知道它“是什么”,并能用语词把它表示出来,这叫作()。
随着地形抬升、湿度加大而形成的雾气,在太行山的峡谷和丘陵之间形成了_______的场景,原本峻峭的山岭像是披上了一层_______的细纱,把太行山的挺拔峥嵘包裹了起来。填入画横线部分最恰当的一项是:
最新回复
(
0
)