首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2018-05-22
51
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
, 设η
0
为方程组AX=b的一个特解,令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解,令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/5ck4777K
0
考研数学二
相关试题推荐
(2007年试题,一(10))设矩阵则A与B().
(2006年试题,一)微分方程的通解是__________
(2007年试题,21)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a)f(b)=g(b),证明:存在ξ∈(a,b),使得f(ξ)=g’’(ξ).
(2009年试题,17)设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
利用代换将方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解.
试确定A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+v(x3).其中v(x3)是当x→0时比x3高阶的无穷小.
设线性方程组①与方程x1+2x2+x3=a-1②有公共解,求a的值及所有公共解.
设(1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T,(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明向量组α,Aα,…,Am-1α线性无关.
随机试题
常温下,皮肤的物理散热速度主要决定于
不违反保密原则的做法是
A、吲哚美辛栓B、硝酸咪康唑栓C、甲硝唑栓D、伏立康唑片E、莫匹罗星软膏治疗真菌性阴道炎首选的药物是()。
在压力容器的法规即技术标准中,规定压力容器选材要求的是()。
农村资金互助社可以吸收社会公众存款、发放贷款。( )
物业服务企业信用档案工作的目的是()。
在关于掌握知识和发展智力的相互关系上,一般认为智力发展是掌握知识的条件,而掌握知识则是发展智力的()。
现在市面上电子版图书越来越多,其中包括电子版的文学名著,而且价格都很低。另外,人们只要打开电脑,在网上几乎可以读到任何一本名著。这种文学名著的普及会大大改变大众的阅读品味,有利于造就高素质的读者群。以下哪项如果为真,最能削弱上述论证?()
为了能在列表框中利用Ctrl和Shift键进行多个列表项的选择,则应将列表框的Multiselect属性设置为______。
A、Thetopicoftheconversation.B、Terriblerevenge.C、Executedeathtomurder.D、Anunbelievableguilty.C对话一开始,男士问“你听到今天的新闻报道说
最新回复
(
0
)