首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n—5,α1,α2,α3,α4,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n—5,α1,α2,α3,α4,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
admin
2021-05-21
71
问题
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n—5,α
1
,α
2
,α
3
,α
4
,α
5
是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
B、α
1
-α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
C、α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
+α
5
,α
5
+α
1
D、α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
5
,α
5
-α
1
答案
A
解析
上述各选择项中的向量均为AX=0的解向量,这是显然的.关键要确定哪一组向量线性无关.可利用下述结论观察求出:
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设
β
1
=α
1
±α
2
,β
2
=α
2
±α
3
,…,β
s-1
=α
s-1
±α
s
,β
s
=α
s
±α
1
其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则
(1)当s与k的奇偶性相同时,向量组β
1
,β
2
,…,β
r
线性相关;
(2)当x与k的奇偶性相反时,向量组β
1
,β
2
,…,β
r
线性无关.
解一 本题中s=5(奇数),只有(A)中向量组带负号的个数k=0(偶数),由上述结论即知(A)中向量组线性无关,因而它们为AX=0的一个基础解系.仅(A)入选.而(B)、(C)、(D)中向量组带负号的个数分别为k=1,k=3,k=5,均为奇数,与s的奇偶性相同,故它们均分别线性相关.
解二 由线性相关的定义易知,选项(D)中向量组线性相关.因
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
4
)+(α
4
-α
5
)+(α
5
-α
1
)=0,
至于(B)、(C)中的向量组也可用矩阵表示法证明线性相关.例如对于(B),有
[α
1
-α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
]=[α
1
,α
2
,α
3
,α
4
,α
5
]
=1.1.1+(一1).1.1+0—0—0—0=0. 而
=1.1.1+(-1).1.1+0-0-0-0=0,
故选项(B)中向量组线性相关.
同理,可证选项(C)中向量组也线性相关.
转载请注明原文地址:https://kaotiyun.com/show/5Ox4777K
0
考研数学三
相关试题推荐
若f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3是正定的,则t的取值范围是__________.
设A相似于B,B=,则r[(2E—A)*]=___________.
2πa2
[*]
设函数y=y(x)由参数方程x=t一In(1+t),y=t3+t2所确定,则
在反常积分中收敛的是
实a为实的,n维非零列向量,E为n阶单位矩阵,证明:矩阵为对称的正交矩阵.
设n维行向量α=(),矩阵A=E一αTα,B=E+2αTα,则AB=
若连续函数满足关系式则f(x)等于()
A、 B、 C、 D、 B这是无界函数的反常积分,x=±1为瑕点,与求定积分一样,作变量替换x=sint,其中故选B.
随机试题
下述哪种酶催化代谢物脱下的氢直接经琥珀酸氧化呼吸链传递
使君子的功效是榧子的功效是
要成为工地试验室外委试验检测机构的必须是()。
某市现有非农业人口50名,随着社会经济的发展和城市规模的不断扩大,市政府决定占用符合土地利用总体规划的土地50hm2用于建设交通道路。为了筹集建设资金,政府将一宗面积25hm2的存量建设用地协议出让给某公司,用途为工业用地,并对该土地办理了登记。该公司向临
浙江被誉为“中国戏曲的摇篮”,其中“四大南戏”()等就是流传至今的传世之作。
下列四项()不是数据流图的基本图素。
中华民族精神的核心是()。
人们可以发现、认识和利用规律,也可以改变规律。()
以下关于冗余数据的叙述中,不正确的是______。
SavingfortheFuture-Purposeofsaving1.Womensavea.fortheirchildren’s【T1】______b.fora【T2】______2.Mensave
最新回复
(
0
)