首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln2x+2klnx一1)≥0.
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln2x+2klnx一1)≥0.
admin
2019-08-01
106
问题
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln
2
x+2klnx一1)≥0.
选项
答案
①当x=1时,不等式成立. ②当0<x<1时,只需在x—ln
2
x+2klnx一1≤0. 设f(x)=x—ln
2
x+2klnx一1,则有 f′(x)=1—2lnx·[*] 令g(x)=x—2lnx+2k,则g′(x)=l一[*]<0,故g(x)单调递减,所以 g(x)>g(1)=1+2k≥1+2(ln2—1)=2ln2-1>0, 从而f′(x)>0,f(x)单调递增,故f(x)≤f(1)=0,结论成立. ③当x>1时,只需证x-ln
2
x+2klnx一1≥1. 由②可知,当1<x<2时,g′(x)=1-[*]<0,则g(x)单调递减; 当x>2时,g′(x)>0,则g(x)单调递增.所以 g(x)≥g(2)=2+2k一2ln2≥2+2(ln2—1)一2ln2=0, 可知f′(x)≥0,f(x)单调增加,则f(x)≥f(1)=0,故结论成立. 综上所述,不等式恒成立,结论得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/5PN4777K
0
考研数学二
相关试题推荐
求
没u=f(x,y,xyz),函数z=z(x,y)由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=____.
设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=_________.
下列反常积分中发散的是
一容器在开始时盛有盐水100升,其中含净盐10千克,然后以每分钟2升的速率注入清水,同时又以每分钟2升的速率将含盐均匀的盐水放出,并设容器中装有搅拌器使容器中的溶液总保持均匀.求经过多少分钟,容器内含盐的浓度为初始浓度的一半?
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。[img][/img]若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为1
随机试题
某人在意外事故中脊髓损伤,丧失横断面以下的一切躯体与内脏反射活动,但数周后屈肌反射、腱反射等较简单的反射开始逐渐恢复,这表明该患者在受伤当时出现了()。
Tostayeconomicallycompetitiveonaglobalscale,theUnitedStatesneeds8millionmorecollegegraduates【C1】______2020.That
患者,女性,65岁。因发现右侧乳房近乳头处包块半年来院就诊,既往体健。查体:右侧乳腺外上象限近乳头处可触及约3cm×1.5cm质硬肿物,肿物局部皮肤稍凹陷,无压痛,边界尚清,腋窝未触及明显肿大淋巴结。患者的临床分期为
在五色主病中,黑色主
女性,65岁,被诊断为狭窄性腱鞘炎,则下述哪种临床表现或特点该患者最不可能出现
某女,32岁。口舌生疮,烦躁焦虑,口干舌燥,小便短赤。舌尖红,苔薄黄,脉数。脉数主病是
票据当事人,是指票据法律关系中享有票据权利、承担票据义务的当事人。以下属票据的基本当事人的有()。
甲公司系增值税一般纳税人,购入原材料750公斤,收到的增值税专用发票注明价款4500万元、增值税税额765万元;发生的运输费为9万元,增值税为0.99万元、包装费3万元、途中保险费用2.7万元。原材料运达后,验收入库数量为748公斤,差额部分为运输途中发生
到2012年7月,中国共产党第十八次全国代表大会代表选举工作顺利完成。差额选举比例提高是这次党代表选举的一个重要特征。差额选举比例的提高有利于()。
2008年国务院制定了我国的十大产业振兴规划,下列未被纳入的行业是()
最新回复
(
0
)