首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln2x+2klnx一1)≥0.
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln2x+2klnx一1)≥0.
admin
2019-08-01
92
问题
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln
2
x+2klnx一1)≥0.
选项
答案
①当x=1时,不等式成立. ②当0<x<1时,只需在x—ln
2
x+2klnx一1≤0. 设f(x)=x—ln
2
x+2klnx一1,则有 f′(x)=1—2lnx·[*] 令g(x)=x—2lnx+2k,则g′(x)=l一[*]<0,故g(x)单调递减,所以 g(x)>g(1)=1+2k≥1+2(ln2—1)=2ln2-1>0, 从而f′(x)>0,f(x)单调递增,故f(x)≤f(1)=0,结论成立. ③当x>1时,只需证x-ln
2
x+2klnx一1≥1. 由②可知,当1<x<2时,g′(x)=1-[*]<0,则g(x)单调递减; 当x>2时,g′(x)>0,则g(x)单调递增.所以 g(x)≥g(2)=2+2k一2ln2≥2+2(ln2—1)一2ln2=0, 可知f′(x)≥0,f(x)单调增加,则f(x)≥f(1)=0,故结论成立. 综上所述,不等式恒成立,结论得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/5PN4777K
0
考研数学二
相关试题推荐
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
设A=有三个线性无关的特征向量,则a=_________.
设f(x)二阶连续可导,且=0,f’’(0)=4,则=____.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
求不定积分
确定常数a和b的值,使得
(2005年试题,一)设a1,a2,a3均为三维列向量,记矩阵A=(a1,a2,a3),B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)如果|A|=1,那么|B|=__________
随机试题
在Word2003编辑状态下,可以利用“文件”菜单中的“()”来设置每页的行数和每行字符数。
如果为当前演示文稿做旁白,需要选择“幻灯片放映”选项卡的“录制幻灯片演示”命令。()
大面积烧伤早期发生的休克多为()
A、散发B、暴发C、流行D、大流行E、大暴发在一个局部地区或集体单位中,短时间内突然有很多相同的患者出现。这些人多有相同的传染源或传播途径。大多数患者常同时出现在该病的最长潜伏期内
下列选项哪些行为属于操纵证券交易价格的行为()。
如果用一个圆来表示词语所指称的对象,则以下哪项中三个词语之间的关系符合下图?()
进入2012年以来,一些企业开始审慎评估之前的并购效果以及新的并购机会,海外并购开始趋于理性化、审慎化。2005年中国企业海外并购事件开始发生,2008年并购进入活跃阶段。从有关资料了解到,2005-2012年,中国企业完成的196件海外并购事件
民主与法治之间的矛盾是
Hewasacceptedasa(n)______memberofstaffafterthreemonth’sprobation.
Itisnotthe"somedayIwillwinthelottery"kindofdaydream,butthekindthattapsintothehiddenpartofyourbrain.That
最新回复
(
0
)