首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[1,l,1,2]T,α2=[3,a+4,2a+5,a+7]T,α3=[4,6,8,10]T,α4=[2,3,2a+3,5]T;β=[0,1,3,6]T.求: 向量组α1,α2,α3,α4的秩及一个极大线性无关组;
设向量组α1=[1,l,1,2]T,α2=[3,a+4,2a+5,a+7]T,α3=[4,6,8,10]T,α4=[2,3,2a+3,5]T;β=[0,1,3,6]T.求: 向量组α1,α2,α3,α4的秩及一个极大线性无关组;
admin
2021-07-27
20
问题
设向量组α
1
=[1,l,1,2]
T
,α
2
=[3,a+4,2a+5,a+7]
T
,α
3
=[4,6,8,10]
T
,α
4
=[2,3,2a+3,5]
T
;β=[0,1,3,6]
T
.求:
向量组α
1
,α
2
,α
3
,α
4
的秩及一个极大线性无关组;
选项
答案
记A=[A|β]=[α
1
,α
2
,α
3
,α
4
|β].对A作初等行变换,有[*]当a≠1/2时,r(α
1
,α
2
,α
3
,α
4
)=r(A)=3,且α
1
,α
3
,α
4
线性无关,故α
1
,α
3
,α
4
是一个极大线性无关组.当a=1/2时,r(α
1
,α
2
,α
3
,α
4
)=r(A)=2,且α
1
,α
3
线性无关,故α
1
,α
3
是一个极大线性无关组。
解析
转载请注明原文地址:https://kaotiyun.com/show/5Qy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
求微分方程χy′=yln的通解.
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
向量组α1,α2,…,αs线性无关的充分条件是
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
随机试题
Theconference______afullweekbythetimeitends.
______determinesagoodmealvariesfromcountrytocountry.
EvenasAmericanshavebeengainingweight,theyhavecuttheiraveragefatintakefrom36to34percentoftheirtotaldietsin
一般说来,初痢宜( )。痢下白多,重用( )。
A.百日咳B.呃逆C.嗳气D.白喉E.叹息根据咳嗽卢音的变化,来诊断疾病的理论,回答以下问题咳嗽时,咳声如犬吠,称为
A、0.02%呋喃西林溶液B、0.1%雷佛奴尔溶液C、氧化锌软膏D、10%鱼石脂软膏E、0.75%碘伏外敷疖肿用
隔声门的隔声效果,主要与下述()因素有关。Ⅰ.门扇的隔声量;Ⅱ.门缝的密封处理方式;Ⅲ.门上五金安装处的隔声处理;Ⅳ.安装隔声门的墙体结构
建设工程监理合同属于()。
【2014.河北石家庄】能力按照创造性成分,可划分为()。
面向对象程序设计的基本思想是通过建立和客观实际相对应的对象,并通过这些对象的组合来创建具体的应用。对象是(6)。对象的三要素是指对象的(7)。(8)均属于面向对象的程序设计语言。而面向对象的程序设计语言必须具备(9)特征。Windows下的面向对象程序设计
最新回复
(
0
)