首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(89年)设矩阵A= (1)求A的特征值; (2)利用(1)的结果,求矩阵E+A-1的特征值,其中E是3阶单位矩阵.
(89年)设矩阵A= (1)求A的特征值; (2)利用(1)的结果,求矩阵E+A-1的特征值,其中E是3阶单位矩阵.
admin
2017-05-26
64
问题
(89年)设矩阵A=
(1)求A的特征值;
(2)利用(1)的结果,求矩阵E+A
-1
的特征值,其中E是3阶单位矩阵.
选项
答案
由A的特征方程 [*] 得A的全部特征值为λ
1
=λ
2
=1,λ
3
=-5. (2)解:由(1)知A
-1
的全部特征值为:1,1,[*].因此有 |E-A
-1
|=0,|-[*]E-A
-1
|=0 作变换,可得 0=|E-A
-1
|=|(E+E)-(E+A
-1
)|=|2E-(E+A
-1
)| 0=|-[*]E-A
-1
|=|(-[*]E+E)-(E+A
-1
)|=(|[*]E-(E+A
-1
)| 因此,矩阵E+A
-1
的全部特征值为:2,2,[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/5RH4777K
0
考研数学三
相关试题推荐
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)X=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
利用定积分计算下列极限:
设矩阵则逆矩阵(A一2E)-1=_____.
n阶矩阵A和B有相同的特征值,且都有n个线性无关的特征向量,则不成立的是().
设λ1、λ2是n阶矩阵A的特征值,α1、α2分别是A的属于λ1、λ2的特征向量,则().
设α、β都是非零的四维列向量,且α与β正交,A=αβT,则矩阵A的线性无关的特征向量共有().
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是().
设a1,a2,a3,a4是四维非零列向量组,A=(a1,a2,a3,a4),A*为A的伴随矩阵,已知方程组AX=0的通解为X=k(0,1,I,0)T,则方程组A*X=0的基础解系为().
随机试题
西方美学史上,最早涉及崇高内容的是()
患者,女性,35岁,有发热、腰痛、尿频、尿急症状,尿中见白细胞管型。经抗生素治疗后痊愈。对肾盂肾炎诊断有价值的是
A、LeFortⅠ型骨折B、LeFortⅡ型骨折C、LeFortⅢ型骨折D、不对称性骨折E、纵行骨折自鼻额缝向两侧横过鼻梁、眶内壁、眶底、颧上颌缝,沿上颌骨侧壁达翼突
以下腧穴位于骶管裂孔处的是
利用房地产经纪机构的办公场所争取上门客户的揽客方法叫做()。
通常当企业的应收账款出现( )情况之一时,应确认为坏账。
废除八股文的法令是()时期颁布的。
Windows多窗口的排列方式不包括()。
下列有关指针的操作中,正确的是()。
ThemodestfarmrunbySolomyLestonandherhusband,afewpicturesqueacresinthecentralAfricancountryofMalawi,isinmo
最新回复
(
0
)