首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
admin
2019-08-12
83
问题
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g
’
(a)存在,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的( )
选项
A、充分必要条件。
B、充分非必要条件。
C、必要非充分条件。
D、非充分非必要条件。
答案
A
解析
因φ(x)在x=a处不可导,所以不能对F(x)用乘积的求导法则,需用定义求F
’
(a)。题设φ(x)以x=a为跳跃间断点,则存在
,A
+
≠A
-
。
当g(a)=0时,
下面证明若F
’
(a)存在,则g(a)=0。
反证法,若g(a)≠0,φ(x)=
,由商的求导法则,φ(x)在x=a可导,这与题设矛盾,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的充要条件。故选A。
转载请注明原文地址:https://kaotiyun.com/show/5SN4777K
0
考研数学二
相关试题推荐
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
设A为3阶矩阵,|A|=6,|A+E|=|A-2E|=|A+3E|=0,试判断矩阵(2A)*是否相似于对角矩阵,其中(2A)*是(2A)的伴随矩阵.
设矩阵A=相似.(1)求a,b的值;(2)求一个可逆矩阵P,使P-1AP=B.
设向量α=(1,0,-1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE-An|=_______.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f"(ξ)=f(ξ);
讨论函数f(χ)=,在χ=0处的连续性与可导性.
微分方程y"+4y=2x2在原点处与直线y=x相切的特解为__________.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x←0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
随机试题
现代汉语普通话中有_____个圆唇元音,它们是_____。
下列哪种疾病骨髓以中、晚幼红细胞增生为主且网织红细胞增高
X企业财务部负责人李某升职,由程某接替其财务负责人岗位,在交接时,李某把相关会计文件转给程某即可。()
一个正方体木块放在桌子上,每一面都有一个数,位于对面上的两个数之和都等于14,小张能看到顶面和两个侧面,看到的三个数之和是18;小李能看到顶面和另外两个侧面,看到的三个数之和是24,那么贴着桌子这个面的数是()。
一个艺术家真正的贡献是艺术语言的创新,如果说审美理想的构建是绘画法度和秩序建立的基石,那么绘画秩序的建立则是绘画风格成熟的__________。风格的形成在于画面所搭建的整体构成必须有__________的秩序和法则。 依次填入划横线部分最恰当的一项是
丹霞地貌
[*]
Humansareuniqueintheextenttowhichtheycanreflectonthemselvesandothers.Humansarea-bleto1,tothinkinabstract
下列程序定义了N×N的二维数组,并在主函数中赋值。请编写函数fun,函数的功能是:求出数组周边元素的平均值并作为函数值返同给主函数中的S。例如,若a数组中的值为:012791974
TheBigPictureA)ItislunchtimeatEastsideElementarySchoolinClinton,Mississippi,thefatteststateinthefattestcount
最新回复
(
0
)