首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
admin
2019-08-12
50
问题
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g
’
(a)存在,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的( )
选项
A、充分必要条件。
B、充分非必要条件。
C、必要非充分条件。
D、非充分非必要条件。
答案
A
解析
因φ(x)在x=a处不可导,所以不能对F(x)用乘积的求导法则,需用定义求F
’
(a)。题设φ(x)以x=a为跳跃间断点,则存在
,A
+
≠A
-
。
当g(a)=0时,
下面证明若F
’
(a)存在,则g(a)=0。
反证法,若g(a)≠0,φ(x)=
,由商的求导法则,φ(x)在x=a可导,这与题设矛盾,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的充要条件。故选A。
转载请注明原文地址:https://kaotiyun.com/show/5SN4777K
0
考研数学二
相关试题推荐
(16)设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求出最大值点及最小值点.
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明:(2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
用数列极限的定义证明下列极限:
在椭圆x2+4y2=4上求一点,使其到直线2x+3y一6=0的距离最短.
设f(x)是连续函数.求初值问题,的解,其中a>0;
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
设,则当x→0时f(x)是g(x)的
随机试题
A.热毒证B.暑湿证C.暑热证D.湿热证E.阴暑证香薷散的主治病证是
A.阴茎套B.宫内节育器C.复方短效口服避孕药D.绝育术E.安全期避孕绝经过渡期避孕方法不应选用
痛风可分为()两种类型
适用于二级和二级以下公路的粒料类基层有()。
下列有关质量事故调查的说法正确的是()。
导致水体富营养化的物质包括()。
期货交易具有( )的特点,吸引了众多投机者的参与。
基金分类的意义在于()。
可以计算其利润的组织单位才是真正意义上的利润中心。()
根据下面材料回答下列题。2010年大陆地区总人口性别比例(以男性人口为100,男性对女性的比例)为()。
最新回复
(
0
)