首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
admin
2018-08-01
59
问题
(01)已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
1
,β
4
=α
1
+tα
1
.讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX=0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Ax=0的解.同理可知β
2
,β
3
也都是Ax=0的解.已知Ax=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Ax=0的一个基础解系,当且仅当,β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数x
1
,x
2
,x
3
,x
4
,使得 x
1
β
1
+x
2
β
2
+x
2
β
3
+x
4
β
4
=0 即 (xx
1
+tx
4
)α
1
+(tx
1
+x
2
)α
2
+ (x
2
+x
3
)α
3
+(tx
3
+x
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 方程组(*)的系数行列式为 [*] =1+(-1)
t+4
t
4
=1-t
4
故当且仅当1-t
4
≠0,即t≠±l时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/f2j4777K
0
考研数学二
相关试题推荐
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
证明:对任意的x,y∈R且x≠y,有
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设A是m×n矩阵,且m>n,下列命题正确的是().
设A=有三个线性无关的特征向量,求x,y满足的条件.
随机试题
知识产权的对象是()。
简述胃癌的临床表现、有关检查以及治疗要点。
A、magnetB、digitalC、SignatureD、angryB
某建筑工程,业主投保了建筑工程一切险,工程竣工移交后,在合同约定保险期限内发生地震,造成部分建筑物损坏,业主向保险公司提出索赔,则应由()。
某承包商承担了某北方集装箱重力式码头和防波堤的施工任务,其中码头工程采用抛石基床。设计要求基床应坐在坚硬的土层上,并在招标文件中给出了相关标高和地质资料。承包商在投标时编制了施工组织设计,确定了重锤夯实基床的施工方案。根据招标文件及现场查看,承包商编制了施
围堰基坑初期排水流量大小主要考虑的因素有()等。
根据现行会计制度的规定,不能全额提取坏账准备的情况有()。
已知甲公司上年财务费用为100万元(其中利息费用为140万元,利息收入为40万元),资本化利息为25万元,净利润为500万元,所得税费用为150万元。则上年的利息保障倍数为()。
下列关于配置无线接入点Aironet1100的描述中,错误的是()。
Youwillhearaprogramaboutbusiness.Foreachquestion(23-30),markoneletter(A,BorC)forthecorrectanswer.Afteryou
最新回复
(
0
)