首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设正项数列{an}单调递减,且(一1)nan发散,试问级数是否收敛?并说明理由。
设正项数列{an}单调递减,且(一1)nan发散,试问级数是否收敛?并说明理由。
admin
2017-12-29
58
问题
设正项数列{a
n
}单调递减,且
(一1)
n
a
n
发散,试问级数
是否收敛?并说明理由。
选项
答案
由于正项数列{a
n
}单调递减有下界,由单调有界原理知极限[*]a
n
存在,将极限记为a,则有a
n
≥a,且a≥0。又因为[*](一1)
n
a
n
是发散的,根据交错级数的莱布尼茨判别法可知a>0(否则级数[*](一1)
n
a
n
是收敛的)。 已知正项级数{a
n
}单调递减,因此 [*] 而[*]收敛,因此根据比较判别法可知,级数[*]也收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/5UX4777K
0
考研数学三
相关试题推荐
证明:r(A+B)≤r(A)+r(B).
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
用切比雪夫不等式确定,掷一均质硬币时,需掷多少次,才能保证‘正面’出现的频率在0.4至0.6之间的概率不小于0.9.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=二次型g(x)=XTAX与f(X)的规范形是否相同?说明理由。
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则=()
微分方程(x2一1)dy+(2xy一cosx)dx=0满足初始条件y(0)=1的特解为___________。
设X,y为两个随机变量,其中E(X)=2,E(y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为ρ=,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
随机试题
学生掌握了整数、分数、小数的知识后,可以将其概括为有理数。这是思维过程的()。
简述抗战前国民政府简任职公务员的任命资格。
超声见腹主动脉局部内膜分离,将血管分成两个腔,分离的内膜随血流搏动而摆动。CDFI见一腔内血流正常,另一腔内血流紊乱,可能的诊断是
男性,42岁,右下腹持续性痛5天,伴恶心,体温38.5℃。体检:右下腹扪及4cm×5cm触痛性肿块,轻度肌紧张。如果急诊手术,最适合的手术选择是
牙本质过敏症不是一种
新区开发和旧区改建的基本方针和主要原则是()。①统一规划;②合理布局;③因地制宜;④综合开发;⑤配套建设;⑥综合利用;⑦合理开发
Factoryfarmingcouldsoonenteraneweraofmassproduction.CompaniesintheUSaredevelopingthetechnologyneededto“clone”
下列各项中,不符合中外合资旅行社设立条件的是()
如果处理机按16位以大端方式(big_endian)编址,请在图4-2所示的存储器图表中填入myRarData数据的存储内容(十六进制表示)。在图4-1所示的程序中,第22行的语句执行完成后,下列语句的结果是多少?请将应填入(n)处的内容写在对应栏中
下列程序的输出结果是()。intt(intx,inty,intcp,intdp){cp=x%y+y*y;dp=x+x-y*y;}main(){ima=4,b=3,c=9,d=8;
最新回复
(
0
)