首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-07-28
64
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(I)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即 [*] 于是A=[*](b
1
,b
2
,…,b
n
). 令[*],显然α,β都不是零向量且A=αβ
T
; 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(α)=1,又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/5WN4777K
0
考研数学二
相关试题推荐
交换积分次序并计算∫0adx∫0x
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时问变化.
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设f(x)二阶可导,且f’’(x)>0.证明:当x≠0时,f(x)>x.
已知a,b,c不全为零,证明方程组只有零解.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
下列可表示由双纽线(x2+y2)2=x2-y2围成平面区域的面积的是
设连续函数z=f(x,y)满足=______________.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
随机试题
下列哪种情况下可以给予实施发明专利或者实用新型专利的强制许可?()
患者,男性,25岁。既往体健,晨起时发现双下肢无力,不能行走。查体:神志清,血压120/60mmHg,心率90次/分,双上肢肌力4级,双下肢肌力1级,肌张力低,双侧腱反射消失,血K+2.3mmol/L,Na+140mmol/L。最可能的诊断是
女性,22岁,自觉右侧锁骨上窝处囊性肿块到医院就诊。CT增强扫描如图所示,最可能的诊断是
女性,28岁,农民,3个月来咳嗽、咳少量白痰,伴乏力、低热、食欲下降,体重减轻6kg,月经不规律。体检发现左颈部可及2个黄豆大小淋巴结,质软、活动。胸片发现右上肺不均质片状阴影及肺门钙化影。若痰涂片找抗酸杆菌阳性,应首先给予下列哪种措施最适宜
已知,则f(x)在(0,π)内的正级数的和函数s(x)在处的值及系数b3分别为()。
根据法律规定,限制民事行为能力人订立的合同在()情况下是有效的。
人才尤其是杰出人才之所以难得,不是因为没有,而是因为凡眼不识、世俗不容。创造性人才的一个突出特点,就是不简单认同既成的事实,不拘泥于固定的想法,具有求异思维和批判精神。他们敢于打破常规,挑战权威,不按常理行事,不按规矩出牌,“扰乱”了现有的秩序,因而不易得
填入横线上最恰当的一项是:梅尧臣的诗句“梅须逊雪三分白,雪却输梅一段香”,常被后人引用,借以说明______。
Afterthe1884ThirdReformActand1885RedistributionAct,allofthefollowinggotthevoteEXCEPT______.
Onmeasuresofmentalsharpness,olderpeoplewhoatemorethantwoservingsofvegetablesdailyappeared____________(比那些很少吃或根本不
最新回复
(
0
)