首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-07-28
96
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(I)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即 [*] 于是A=[*](b
1
,b
2
,…,b
n
). 令[*],显然α,β都不是零向量且A=αβ
T
; 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(α)=1,又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/5WN4777K
0
考研数学二
相关试题推荐
f(x)g(x)在x0处可导,则下列说法正确的是().
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
设A=,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
曲线的渐近线的条数为().
设A=①a,b取什么值时存在矩阵X,满足AX-AX=B?②求满足AX-AX=B的矩阵X的一般形式.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
随机试题
霍乱发病主要由哪项引起( )。流脑发病主要由哪项引起( )。
下列行为中,虽主体不属于完全民事行为能力人,但行为效力不受影响的有哪些?()
法律关系有不同的分类标准,但是如果按照公私法的划分的标准法律关系可以划分为三大类:公法法律关系、私法法律关系和公私法(社会法等)混合法律关系。关于以上的分类,以下论述中正确的是:()。
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。
下列关于经济学概括、解释投资与国民收入之间变动关系的理论的说法,错误的是()。
忌油管道用蒸汽吹扫脱脂时,应按设计规定进行脱脂质量检查。利用间接法检验时宜采用()。
下列属于综合理财规划服务的主要内容的有()。
在负责特定任务工作小组内部进行的所有形式的沟通,都可以称为()
近代自然科学诞生的标志是:
多媒体计算机是指
最新回复
(
0
)