首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
admin
2018-05-22
64
问题
设f(x)二阶可导,f(0)=f(1)=0且
f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0, [*]f(x)=-1,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0, 根据泰勒公式 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,ξ
1
∈(0,c) f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1) 整理得 f’’(ξ
1
)=[*],f’’(ξ
2
)=[*] 当c∈[*]时,f’’(ξ
1
)=[*]≥8,取ξ=ξ
1
; 当c∈[*]时,f’’(ξ
2
)=[*]≥8,取ξ=ξ
2
. 所以存在ξ∈(0,1),使得f’’(ξ)≥8.
解析
转载请注明原文地址:https://kaotiyun.com/show/8qk4777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,A的秩r(A)=2,且A,求(1)A的特征值与特征向量;(2)矩阵A.
曲线的斜渐近线方程为______.
如图1—3—17,一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y与x2+y2=1连接而成的.(1)求容器的体积;(2)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2…,βs线性表示,则
设j,y=-y(x)是二阶常系数微分方程,yn+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x=0时,函数的极限
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图1—5—13).
求二重积,其中D是x2+y2=1,x=0和y=0。所围成的区域在第一象限部分.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
随机试题
施工过程中常见的索赔类型有哪些()
有关网络叙述正确的是()
(2002年第53题)二尖瓣口面积为2.0cm2时,下列提法哪项正确
患儿小便频数,淋漓不尽,面色苍黄,精神倦怠,食欲不振,手足不温,眼睑微肿,大便稀薄,舌淡苔薄,脉细无力。治疗应首选( )。
板材隔墙与骨架隔墙组成的房间每个检验批应至少抽查()%,并不得少于3间。
下列各项预算编制方法中,不受现有费用项目和现行预算束缚的是()。
某企业人力资源部采用下列方法对下一年的人力资源供给情况进行预测,供给情况如下表所示。初期人员数量分别为:销售总监20人、销售经理40人、业务主管60人、业务员80人。根据以上资料,回答下列问题:下一年预计业务主管将减少()人。
物业管理属于的行业性质是()。
"PeterFernwasmadonmountains"showsthat______.Accordingtothepassage,afterPeter’smarriagehewould______.
Nursing,asatypicallyfemaleprofession,mustdealconstantlywiththefalseimpressionthatnursesaretheretowaitonthep
最新回复
(
0
)