首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组 A*x=0的通解.
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组 A*x=0的通解.
admin
2021-02-25
48
问题
设n阶方阵A=(a
ij
)
n×n
的每行元素之和为0,其伴随矩阵A
*
≠O,若a
11
的代数余子式A
11
≠0,求方程组
A
*
x=0的通解.
选项
答案
由已知 [*] 所以方程组Ax=0有非零解,从而r(A)<n,又由于A
*
≠O,r(A)≥n-1,所以r(A)=n-1,从而r(A
*
)=1,因此方程组A
*
x=0的基础解系有n-1个解向量,又r(A)=n-1,所以|A|=0,于是A
*
A=|A|E=O,因此矩阵A的n个列向量都是方程组A
*
x=0的解,若令A=(α
1
,α
2
,…,α
n
),由于a
11
的代数余子式A
11
≠0,且r(A)=n-1,所以向量组α
2
,…,α
n
线性无关,从而A
*
x=0的基础解系为α
2
,…,α
n
,于是A
*
x=0的通解为k
1
α
2
+…+k
n-1
α
n
,其中k
1
,k
n-1
为任意常数.
解析
本题是抽象线性方程组的求解问题.要先确定矩阵A的秩r(A),再由r(A)和r(A
*
)的关系确定A
*
的秩r(A
*
),然后由A
*
A=|A|E=O确定A
*
x=0的通解.
转载请注明原文地址:https://kaotiyun.com/show/5a84777K
0
考研数学二
相关试题推荐
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A=,则下列矩阵中与A合同但不相似的是
微分方程y〞+y=-2x的通解为_________.
随机试题
塑化治疗技术中的要求是
该患者应诊断为该患者的缺铁原发表现为
治疗痿证、瘫痪宜选用的电针波型是
宏达建筑材料有限公司(以下简称宏达公司)是国有企业,该公司成立之初,全部资产为860万元。公司成立后,在激烈的市场竞争中,经营决策屡屡失误,加之公司内部管理混乱,至2009年公司即负债280万元,2010年负债620万元,2011年负债1200万元,201
交易标准化协议达成后,在未来某一特定时间,如几周、几个月之后才办理交割的交易是()。
由已知关系式f[xg(y),y]=x+g(y)两边对x求二次偏导,有[*]
以太网物理地址的长度是______。
若有以下程序:#include<stdio.h>main(){inta=6,b=0,c=0;for(;a;){b+=a;a一=++c;)printf("%d,%d,%d\n",a,b,c);}
You’dbetter_________thewateruntilithasbeenboiled.
Lifeisdifficult.Itisagreattruthbecauseoncewetrulyunderstandandacceptit,thenlifeisnolongerdifficult.
最新回复
(
0
)