首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2022-08-19
90
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f″(x)≥0,所以有f(x)≥f(x
0
)+f′(x
0
)(x-x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1, 于是有a≤∫
a
b
xφ(x)dx=x
0
≤b. 将x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f′(x
0
)(x-x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f′(x
0
)[xφ(x)-x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/5kR4777K
0
考研数学三
相关试题推荐
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明:(1)中的
∫0xxsin(x-t)2dt=________.
设f(x)为偶函数,且f’(-1)=2,则=________.
设a1=1,an+1+=0,证明:数列{an}收敛,并求an.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;(2)存在ξ∈(0,3),使得f’’(ξ)=2f’(ξ)=0.
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤
设f(x)在[0,+∞)上连续且单调增加,试证对任何b>a>0,都有下面不等式成立:
设随机变量X,Y不相关,X~U(-3,3),Y的密度为fY(y)=根据切比夫不等式,设随机变量X1,X2,…,X10相互独立,且Xi~π(i)(i=1,2,…,10),Y=Xi,根据切比雪夫不等式,P{4<Y<7)≥____________.
随机试题
下列作家中领导古文运动的是()
上消化道大出血最常见的病因是
监理在审查施工顺序时,应考虑两端路基、路面施工的干扰以及各工序的配合。()
资本市场有多种分类方式,按()可分为发行市场和流通市场。
以下生活常识说法错误的是:
3,4,10,33,()
为了抗日民族统一战线的坚持、扩大和巩固,中国共产党制定了“发展进步势力,争取中间势力.孤立顽固势力”的策略总方针。党在抗日民族统一战线中争取中间势力必须具备的条件是
不正当竞争违反的是______原则。
Anythingtodowithaeroplanesandflyingfascinateshim.
Dr.WilsonandMr.Wanghaveknowneachotherbefore.
最新回复
(
0
)