首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在. (1)写出f(x)的带拉格朗日余项的麦克劳林公式; (2)证明:存在ξ1,ξ2∈[-a,a],使得
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在. (1)写出f(x)的带拉格朗日余项的麦克劳林公式; (2)证明:存在ξ1,ξ2∈[-a,a],使得
admin
2021-11-09
58
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,
存在.
(1)写出f(x)的带拉格朗日余项的麦克劳林公式;
(2)证明:存在ξ
1
,ξ
2
∈[-a,a],使得
选项
答案
(1)由[*]存在,得f(0)=0,f’(0)=0,f’(0)=0, 则f(x)的带拉格朗日余项的麦克劳林公式为f(x)=[*]x
4
,其中ξ介于0与x之间. (2)上式两边积分得∫
-a
a
f(x)dx=[*]∫
-a
a
(ξ)x
4
dx. 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, 两边在[-a,a]上积分得[*]a
5
≤∫
-a
a
f
(4)
(ξ)x
4
dx≤[*]a
5
, 从而[*]∫
-a
a
≤[*]≤∫
-a
-a
f(x)dx≤[*] 于是m≤[*]∫
-a
a
f(c)dx≤M, 根据介值定理,存在ξ
1
∈[-a,a],使得f
(4)
(ξ
1
)=[*]∫
-a
a
f(x)dx,或a
5
f
(4)
(ξ)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/5wy4777K
0
考研数学二
相关试题推荐
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=_______.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设a1=1,a2=2,3an+2-4an+1+an=0,n=1,2,…,求an.
设A=(α1,α2,α3,α4,α5),其中α1,α2,α3线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
计算下列不定积分:
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
设区域D由y=|χ|与y=1围成,则(y2sinχ-χ2y)dχdy=_______.
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则().
数列1,,…的最大项为_______.
设一锥形贮水池,深15m,口径20m,盛满水,今以吸筒将水吸尽,问作多少功?
随机试题
学习者的概念属于“自我定向型”,属于【】
男性,37岁。起病呈急进性肾炎势态,肾活检报告为急进性肾炎Ⅲ型。女性,18岁。以肾病综合征起病,经肾活检证实为狼疮性肾炎弥漫增生型。
关于流线,错误的说法是()。
金融市场最主要、最基本的功能是()。
社会总需求是指对一国总产出的意愿购买量,它包括()。
小红、小兰和小慧三姐妹,分别住在丰台区、通州区、朝阳区。小红与住在通州的姐妹年龄不一样大,小慧比住在朝阳区的姐妹年龄小,而住在通州的姐妹比小兰年龄大。那么按照年龄从大到小,这三姐妹的排序是()。
下列关于金融常识的说法正确的是:
对于被判缓刑的罪犯,由监狱交所在单位或者基层组织予以考察。()
若一棵二叉树的高度(即层数)为h,则该二叉树()。
TheAmericansgotothecinemamainlyto______.
最新回复
(
0
)