首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是( ).
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是( ).
admin
2020-03-15
78
问题
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是( ).
选项
A、m一n且|A|≠0
B、导出组AX=0有且仅有零解
C、A的列向量组α
1
,α
2
,…,α
n
与α
1
,α
2
,…,α
n
,b等价
D、r(A)=n,且b可由A的列向量组线性表出
答案
D
解析
利用A=b有唯一解的充分必要条件是r(A)=r(A|b)=n去判别.
当m=n时,必有
因而必有解.又|A|≠0,即m=n=r(A),则AX=b必有唯一解,这也可由克拉默法则得知.但并不必要,当m≠n时,方程组也可能有唯一解.例如
AX=b有唯一解.(C)是AX=b有唯一解的必要条件,并非充分条件,即两个向量组α
1
,α
2
,…,α
n
与α
1
,α
2
,…,α
n
,b等价是方程组AX=b有解的充要条件,是有唯一解的必要条件,例如AX=b有解,但解不唯一.(B)是AX=b有唯一解的必要条件,并非充分条件.因这时不能保证r(A)=r(A|b).如
AX=0有非零解,则AX=b必没有唯一解,它可能有无穷多解,亦可能无解,当AX=0只有零解时,AX=b可能有唯一解,也可能无解,并不能保证必有唯一解.例如
AX=0仅有零解,而AX=b并无解.(D)秩r(A)=n表明A的列向量组线性无关,因而如AX=b有解,则解必唯一.仅r(A)=n还不能保证
,因而不能保证AX=b有解(参见(B)中反例),b可由A的列向量组线性表出是AX=b有解的充要条件,这两个条件结合才能保证
因而它们才是AX=b有唯一解的充要条件,仅(D)入选。
注意(B)、(C)均是必要条件,前者不能保证r(A)=
,因而不能保证AX=b必有解,后者不能保证AX=b的解唯一.A的列向量线性相关,AX=b绝对没有唯一解,列向量组线性无关最多有唯一解.
转载请注明原文地址:https://kaotiyun.com/show/60D4777K
0
考研数学三
相关试题推荐
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P-1AP=Λ。
已知A=有三个线性无关的特征向量,则x=__________。
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以Φ(x)为极限的是()
设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时Yi依概率收敛到零,只要{Xn:n≥1}()
设D为不等式0≤x≤3,0≤y≤1所确定的区域,则min(x,y)dxdy=__________。
求下列方程满足给定条件的特解:yt+1+4yt=17cost,y0=1.
设D1是由曲线和直线y=a及x=0所围成的平面区域;D2是由曲线和直线y=a及x=1所围成的平面区域,其中0<a<1.问当a为何值时,V1+V2取得最小值?试求此最小值.
随机事件A与B互不相容,0<P(A)<1,则下列结论中一定成立的是()
设f(x,y)与φ(x,y)均为可微函数,且φ'y(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
随机试题
A.甲型强心苷B.乙型强心苷C.丙型强心苷D.丁型强心苷E.戊型强心苷与亚硝酰铁氰化钠反应是()。
混凝土碳化的主要危害是导致()。
监控量测应达到以下目的()。
若f(x)的一个原函数是e-2x,则∫f’’(x)dx等于()。
项目资本金财务盈利能力分析是融资后()分析,是针对项目资本金获利能力的分析。
我们党的最大政治优势是()。
这几天我()接到一些莫名其妙的电子邮件。
你新加入单位,老周对你帮助很大,态度很好。一次会议上。领导认为你意见创新,让你负责一个项目,老周协助,老周很失落。同事认为你作为徒弟抢了师父的活而对你不满。你怎么办?
关于ARM指令中的条件域,以下表述错误的是()。
报表页脚的内容只在报表的______打印输出。
最新回复
(
0
)