首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2019-11-25
39
问题
设A=
,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不 同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*]; λ
2
=a时,由(aE-A)X=0得ξ
2
=[*]; λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*]. 令P=[*],得P
-1
AP=[*]. (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量, 故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*], 因为r([*]E-A)=2,所以方程组([*]E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/66D4777K
0
考研数学三
相关试题推荐
函数f(x)=
求证:当x>0时,(x2一1)lnx≥(x一1)2.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2).证明:(1)当n为偶数且f(n)(x0)<0时,f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>0时,f(x)
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设(Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
下列命题成立的是().
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求
随机试题
板厚大于20mm的对接焊缝进行工艺评定时,一定要做侧弯试验。()
鉴定蛋白质药品纯度时,至少应该用两种以上的方法,而且两种方法的分离机制应当不同,其结果判断才比较可靠。()
山药在补养脾胃方面有哪些特点?
治疗水肿变证,邪陷心肝常用方剂是治疗麻疹逆证,邪陷心肝常用方剂是
风机按照排气压强的不同划分,可分为()。
总资产周转率是销售收入与资产总额周转速度的比值。()
科尔伯格认为,与儿童品德发展水平直接相联系的是()。
1,3,0,6,10,9,()。
请讨论数量型货币政策工具与价格型货币政策工具各自的特点,以及各自的局限性。目前我国货币政策操作中应该如何有效地使用这两类工具?
A、Itisaboutphotographycourses.B、Itisabout"BlackandWhitephotography".C、Itisabout"IntroducingPhotography".D、Itis
最新回复
(
0
)