首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2018-11-11
65
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*] P=[*],P
-1
AP=[*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*],因为[*]=2,所以方程组[*]的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Cj4777K
0
考研数学二
相关试题推荐
设向量组(I):α1=(2,4,一2)T,α2=(一1,a一3,1)T,α3=(2,8,b一1)T;(Ⅱ):β1=(2,b+5,一2)T,β2=(3,7,a一4)TT,β3=(1,2b+4,一1)T.问.(1)a,b取何值时,r(I)=r(Ⅱ),且(I)与
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.求参数c及此二次型对应矩阵的特征值;
设则二次型的对应矩阵是__________.
设有向量组问α,β为何值时:向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设D是位于曲线下方、x轴上方的无界区域.(1)求区域D绕x轴旋转一周所成旋转体的体积V(a);(2)当a为何值时,V(a)最小.并求此最小值.
设f(x)连续,φ(x)=∫01f(xt)dt,且=A,(A为常数),求φ’(x),并讨论φ’(x)在x=0处的连续性.
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
既能清热燥湿,又能治疗胎热不安的药物是()
下列何者为卡介苗的初种年龄
儿童早期与父母的情感关系是()。
Thedoctoradvisedthatshe______physicalexaminationregularly.
根据以下资料,回答下列问题。根据中国通信信息研究院(原工信部电信研究院)数据,2014年,中国智能手机出货量3.89亿部,相比2013年的4.23亿部下降了8.2%。而在2012年、2013年,智能手机市场还保持着166.8%、64.1%的高增速。与中国
我国教育目的的基本内容结构是什么?
习近平在2016新年贺词中衷心希望,国际社会共同努力,多一份平和,多一份合作,变对抗为合作,化干戈为玉帛,共同构建各国人民共有共享的人类命运共同体。共享的人类命运共同体,必须要推动建立以合作共赢为核心的新型国际关系。中国倡导建立合作共赢的新型国际关系,核心
[*]
Allmammalsfeedtheiryoung.Belugawhalemothers,forexample,nursetheircalvesforsometwentymonths,untiltheyareabout
Canexercisebeabadthing?Suddendeathduringorsoonafterstrenuousexertiononthesquashcourtoronthearmytraininggr
最新回复
(
0
)