首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2018-11-11
61
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*] P=[*],P
-1
AP=[*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*],因为[*]=2,所以方程组[*]的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Cj4777K
0
考研数学二
相关试题推荐
设随机变量X服从N(2,σ2),且P{2<X<4}=0.3,则P{X<0}=__________.
设函数y=y(x)由参数方程所确定,其中f(u)可导,且f’(0)≠0,求
设随机变量X和Y相互独立,其分布函数分别为FX(x)=,求U=X+Y的概率密度fU(u).
求幂级数的和函数.
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设矩阵A=(α1,α2,α3,α4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
已知两曲线y=f(x)与在点(0,0)处的切线相同.求此切线的方程,并求极限
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
随机试题
孔隙度是()之比。
最常用于胰腺癌辅助诊断及术后随访指标的实验室检查项目是
下列有关心力衰竭的说明,哪一项最准确
管理评审是检验检测机构的执行管理层根据预定的日程和程序,定期地对实验室的管理体系、检测和(或)校准活动进行评审,以确保其持续适用和有效,并进行必要的改动或改进。其典型周期为()。
利用吸收直接投资筹集资金没有资本成本。()
小辉早晨着急上学,匆匆忙忙地吃了一块面包,喝了一杯牛奶。请根据小辉的早餐分析同答下列问题:若在尿液中出现蛋白质,可能是肾单位中的_________发生了病变。
行政组织科学化的重要标志是行政组织建设要遵循依法设置原则。()
材料中的主人公主要负责市容管理工作,分管小区的垃圾分类工作。材料中有相关具体措施,比如向各家各户免费发放垃圾袋,垃圾筐。进行垃圾分类的宣传。但是此小区居民多为拆迁户,素质不高,不了解垃圾分类的好处。虽然工作做了很多,但是效果不理想,道路两旁还是有很多垃圾乱
在1M字节的存储器中,每个存储单元都有一个惟一的______位地址,称为此物理单元的物理地址。
WhenRuthRedding,anaccountmanager,wassentonamanagementtrainingcoursetoimproveherrelationshipswithhercolleagues
最新回复
(
0
)