首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):α1=(2,4,一2)T,α2=(一1,a一3,1)T,α3=(2,8,b一1)T;(Ⅱ):β1=(2,b+5,一2)T,β2=(3,7,a一4)TT,β3=(1,2b+4,一1)T.问.(1)a,b取何值时,r(I)=r(Ⅱ),且(I)与
设向量组(I):α1=(2,4,一2)T,α2=(一1,a一3,1)T,α3=(2,8,b一1)T;(Ⅱ):β1=(2,b+5,一2)T,β2=(3,7,a一4)TT,β3=(1,2b+4,一1)T.问.(1)a,b取何值时,r(I)=r(Ⅱ),且(I)与
admin
2016-01-11
46
问题
设向量组(I):α
1
=(2,4,一2)
T
,α
2
=(一1,a一3,1)
T
,α
3
=(2,8,b一1)
T
;(Ⅱ):β
1
=(2,b+5,一2)
T
,β
2
=(3,7,a一4)T
T
,β
3
=(1,2b+4,一1)
T
.问.(1)a,b取何值时,r(I)=r(Ⅱ),且(I)与(Ⅱ)等价?(2)a,b取何值时,r(I)=r(Ⅱ),但(I)与(Ⅱ)不等价?
选项
答案
以α
1
,α
2
,α
3
,β
1
,β
2
,β
3
为列作矩阵,并对该矩阵作初等行变换化成行阶梯形矩阵:[*] 由以上行阶梯形矩阵,得(1)当a≠1,b≠一1时,|α
1
,α
2
,α
3
|≠0,|β
1
,β
2
,β
3
|≠0,故此时r(I)=r(Ⅱ)=r(I,Ⅱ)=3,所以(I)与(Ⅱ)等价.当a=1,b=一1时,r(I)=r(Ⅱ)=r(I,Ⅱ)=2,故(I)与(Ⅱ)也等价. (2)当a=1,b≠一1时,r(I)=r(Ⅱ)=2,但r(I)≠r(I,Ⅱ)=3,故(I)与(Ⅱ)不等价.当a≠1,b=一1时,仍有r(I)=r(Ⅱ)=2,但r(I)≠r(I,Ⅱ)=3,故(I)与(Ⅱ)也不等价.综上可知,当a≠1,且b≠一1,或a=1,且b=一1时,r(I)=r(Ⅱ),从而(I)与(Ⅱ)等价;当a=1,且b≠一1或a≠1,且b=一1时,r(I)=r(Ⅱ),但(I)与(Ⅱ)不等价.
解析
本题考查在秩相等的条件下判断两向量组是否等价,需要从等价定义出发,即从(I)可由(Ⅱ)线性表示,且(Ⅱ)又可由(I)线性表示来考虑,也就是r(I)=r(Ⅱ)=r(I,Ⅱ).
转载请注明原文地址:https://kaotiyun.com/show/Ri34777K
0
考研数学二
相关试题推荐
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设Z=X+Y,其中随机变量x与Y相互独立,且分布函数分别为求方差D∣Z∣.
设Z=X+Y,其中随机变量x与Y相互独立,且分布函数分别为X与Z是否相关?说明理由.
设(X,Y)服从二维正态分布N(0,0,1/2,1/2;0),Φ(x)为标准正态分布函数,则P{X-Y<E(|X-Y|)}=()
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设,其中a,b均为常数,且a>b,b≠0,则()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
∫x2/(1+x2)arctanxdx.
证明:当x>0时,arctanx+1/x>π/2.
随机试题
卡托普利抗心衰作用的机制是()
A、肝经B、心经C、肺经D、大肠E、肾经补阳药主归()
夏普比率数值越大,代表()。
在试算平衡表中,左右方合计金额不相等的项目是()。
个案研究的资料收集有其特色,这些特色有()。
班主任赵老师经常运用表扬、奖励、批评和处分等方式引导和促进学生品德积极发展,这种方法属于()。
关于“师爱”,下列正确的说法是()。
Novell网是目前市场占有率最高的微机局域网,它的成功在于其优秀的网络操作系统【 】。
—Excuseme,whereis______shop?—It’soverthere,justacrossthestreet.
Eachofthemechanicaldevices______itstaskasthoughnothing______wrong.
最新回复
(
0
)