首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (I)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (I)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2019-02-26
34
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(I)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(I)令F(x)=[*]显然,F’(x)=f(x).由于F(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(一∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(I)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(I)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/6H04777K
0
考研数学一
相关试题推荐
已知()
如果级数都发散,则()
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。(Ⅰ)求a1,a2,a3,a4应满足的条件;(Ⅱ)求向量组α1,α2,α3
(2004年)设L为正向圆周x2+y=2在第一象限中的部分,则曲线积分的值为____________。
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f
(2003年)设{an},{bn},{cn}均为非负数列,且则必有()
(2003年)某建筑工程打地基时,需用汽锤将桩打进土层。汽锤每次击打,都将克服土层对桩的阻力而做功。设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0)。汽锤第一次击打将桩打进地下am。根据设计方案,要求汽锤每次击打桩时所做的功与前一次
已知微分方程y’+y=f(x),且f(x)是R上的连续函数.(I)当f(x)=x时,求微分方程的通解.(Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
已知线性方程组的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组的通解,并说明理由。
记极限为f(x),求函数f(x)的间断点并指出其类型。
随机试题
防止PCR交叉污染的措施包括
对新生仔畜窒息处理失当的是
患者素有水饮,复感风寒,恶寒发热,无汗,咳喘痰多而稀,身体重痛,舌苔白滑,脉浮。治疗应选用
一足月婴,生后1天内出现黄疸,拒哺。查体:嗜睡,面色苍白,Hb90g/L,血清未结合胆红素342μmol/L。诊断为新生儿溶血症,首选的检查是
背景资料:某施工单位承接的二级公路中有四道单跨2.0m×2.0m钢筋混凝土盖板涵,在编制的《施工组织设计》中,对各涵洞的工序划分与工序的工作时间分析如下表所示。施工单位最初计划采用顺序作业法组织施工,报监理审批时,监理认为不满足工期
我国城市燃气管道按压力来分,低压燃气输气压力P<()MPa。
某公司依靠敏锐的市场洞察力和快速的反应力获得了较高的市场占有率,表明该企业的哪项能力很强()。
Completethenotesbelow.ChooseONEWORDONLYfromthepassageforeachanswer.Writeyouranswersinboxesonyourans
Whichwordistheoddoneout?London,Paris,Dublin,TheHague,Vienna
Itisobviousthatwhileselfawarenessisahealthyquality
最新回复
(
0
)