首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0). 求矩阵A;
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0). 求矩阵A;
admin
2022-04-27
58
问题
设3阶实对称矩阵A满足A
2
=2A,已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax经正交变换x=Qy化为λy
2
2
+λy
3
2
(λ≠0),其中Q=
(b>0,c>0).
求矩阵A;
选项
答案
由已知,设A的特征值λ对应的特征向量为α(α≠0),则由A
2
=2A,可知 (A
2
-2A)α=(λ
2
-2λ)α=0. 故A的特征值为0或2.由标准形为λy
2
2
+λy
3
2
,知A的特征值为λ
1
=0,λ
2
=λ
3
=2.故Q
-1
AQ=diag(0,2,2),即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6LR4777K
0
考研数学三
相关试题推荐
已知点A(3,-1,2),B(1,2,-4),C(-1,1,2),试求点D,使得以A,B,C,D为顶点的四边形为平行四边形.
设矩阵1,2,…,n),则线性方程组ATx=b的解是_____.
设A是n阶矩阵,且A的行列式|A|=0,则A().
求由方程2x2+2y2+z2+8xz—z+8=0所确定的函数z(x,Y)的极值,并指出是极大值还是极小值.
设某商品一周的需求量是X,其概率密度为若各周对该商品的需要相互独立.以Y表示三周中各周需求量的最大值,求Y的概率密度fy(y).
设二维随机变量(X,Y)服从D上的均匀分布,其中D是由直线y=x和曲线y=x2围成的平面区域.求X和y的边缘概率密度fx(x)和fy(y);
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设当x→0时,(x-sinx)ln(1+x)是比exn-1高阶的无穷小,而exn-1是比∫0x(1-cos2t)dt高阶的无穷小,则n为().
求函数f(x)=∫0x2(2-t)e-tdt的最大值与最小值.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|f(x)dx-(b-a)f(a)|≤(b-a)2.
随机试题
A血管神经损伤B失血性休克C骨筋膜室综合征D骨不连接或延迟连接E肘后三角关系改变伸直型肱骨踝上骨折易合并
先天性肠旋转不良的临床表现是
不需要重整医嘱的是
川芎茶调散的功能是()。
以下符合水资源税征收管理规定的有()。
下列符合唯物主义历史观的是()。
如果一项投资不能产生利润,那么以投资为基础的减轻赋税就是毫无用处的。任何一位担心新资产不会赚钱的公司经理都不会因减轻公司本来就不欠的税款的允诺而得到安慰。下面哪项是从上文得出的最可靠的推论?
移动支付
指出该工程招投标过程中的不妥之处,为什么?监理会同建设单位对A公司进行经济惩罚额度是否合适?请阐明理由。A公司宣布与B公司签订的分包合同无效的法律依据是什么?
下列说法中,不正确的是()。
最新回复
(
0
)