首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( )
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( )
admin
2014-04-16
71
问题
设ξ
1
=[1,一2,3,2]
T
,ξ
2
=[2,0,5,一2]
T
是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( )
选项
A、α
1
=[1,一3,3.3]
T
B、α
2
=[0,0,5,一2]
T
.
C、α
3
=[一1,一6,一1,10]
T
D、α
4
=[1,6,1,0]
T
.
答案
C
解析
Ax0的基础解系为ξ
1
,ξ
2
,若α
i
是Ax=0的解向量
α
i
可由ξ
1
,ξ
2
线性表出
非齐次线性方程组ξ
1
x
1
+ξ
2
x
2
=α
i
有解.逐个α
i
判别较麻烦,合在一起作初等行变换判别较方便.
显然因r(ξ
1
,ξ
2
)=,r(ξ
1
,ξ
2
,α
3
)=2,ξ
1
x
1
+ξ
2
x
2
=α
3
有解,故α
3
是Ax=0的解向量,故应选C.而r(ξ
1
,ξ
2
)=2≠r(ξ
1
,ξ
2
,a
i
)=3,i=1,2,4.故α
1
,α
2
,α
4
不是Ax=0的解向量.
转载请注明原文地址:https://kaotiyun.com/show/YH34777K
0
考研数学二
相关试题推荐
(90年)设函数f(χ)对任意的χ均满足等式f(1+χ)=af(χ),且有f′(0)=b,其中a、b为非零常数,则【】
(16年)级数sin(n+k)(k为常数)【】
(2016年)已知函数f(x,y)=则()
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
[2006年]设矩阵E为二阶单位矩阵,矩阵A满足BA=B+2E,则|B|=____________.
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
(89年)设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t)(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当向量组α1,α2,α3线性相关时,
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
设f(x)在[0,1]上二阶可导,|f’(x)|≤1(x∈[0,1]),f(0)=f(1),证明:对任意的x∈[0,1],有|f’(x)|≤1/2。
随机试题
计算机网络具有________、资源共享、分布式处理和提高系统的可靠性的功能。
精馏塔的进料温度升高,提馏段的提浓能力不变。()
阅读《冯谖客孟尝君》中的一段文字,回答下列问题:后孟尝君出记,问门下诸客:“谁习计会,能为文收责于薛者乎?”冯谖署日:“能。”孟尝君怪之,曰:“此谁也?”左右曰:“乃歌夫长铗归来者也。”孟尝君笑曰:“客果有能也,吾负之,未尝见也。”请而见之,谢曰
出生后2个月女孩,体检时发现左侧下肢较右侧短,左侧腹股沟纹深而高,双侧大腿皮纹不对称,左侧下肢外旋幅度小。Or-tolani试验阳性。
内毒素的主要成分是()
甲公司开发的系列楼盘由乙公司负责安装电梯设备。乙公司完工并验收合格投入使用后,甲公司一直未支付工程款,乙公司也未催要。诉讼时效期间届满后,乙公司组织工人到甲公司讨要。因高级管理人员均不在,甲公司新录用的法务小王,擅自以公司名义签署了同意履行付款义务的承诺函
按照生命周期法的开发性质,在系统规划阶段完成时,但在进入系统分析阶段之前要写出()。
如图,已知曲线C1:-y2=1,曲线C2:|y|=|x|+1,P是平面上-点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”.设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
古丽平时在单位只埋头处理自己的事情,不跟其他人交流,来单位一年只认识自己处事的人,其他人都不认识,你认同古丽的做法吗?为什么?
某单位组建兴趣小组,每人选择一项参加。羽毛球组人数是乒乓球组人数的2倍,足球组人数是篮球组人数的3倍,乒乓球组人数的4倍与其他3个组人数的和相等,则羽毛球组人数等于:
最新回复
(
0
)