首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求一条凹曲线,已知其上任意一点处的曲率其中α为该曲线在相应点处的切线的倾斜角(cosα>0),且该曲线在点(1,1)处的切线为水平方向.
求一条凹曲线,已知其上任意一点处的曲率其中α为该曲线在相应点处的切线的倾斜角(cosα>0),且该曲线在点(1,1)处的切线为水平方向.
admin
2018-09-25
61
问题
求一条凹曲线,已知其上任意一点处的曲率
其中α为该曲线在相应点处的切线的倾斜角(cosα>0),且该曲线在点(1,1)处的切线为水平方向.
选项
答案
由曲率计算公式及曲线为凹知, [*] 因为α为曲线在相应点的切线的倾斜角,且cosα>0,所以 [*] 整理得微分方程2y
2
y’’=[1+(y’)
2
]
2
. 此为缺x的可降阶二阶方程.令 [*] 代入上述微分方程,化简为 [*] 解得y
2
=(p+1)+y(p
2
+1)C
2
.由于曲线在点(1,1)处切线水平,故y(1)=1,y’(1)=0.于是有 1=1+C
1
,C
1
=0.故得y=p
2
+1,即 [*] 由于曲线是凹的,y=1不是解,再将 [*] 分离变量后积分得 [*] 由y(1)=1,所以C
2
=-1,得 [*] 化简得 4(y-1)=(x-1)
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/6cg4777K
0
考研数学一
相关试题推荐
确定常数a和b,使得函数f(x)=处处可导.
求直线L:在平面∏:x-y+2z-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=f(t)dt,求证:(Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)f(x)dx;(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),n为自
设函数u(x,y)有连续二阶偏导数,满足=0,又满足下列条件:u(x,2x)=x,u′x(x,2x)=x2(即u′x(x,y)|y=2x=x2),求u″xx(x,2x),u″xy(x,2x),u″yy(x,2x).
在一个盒子中放有10个乒乓球,其中8个是新球,2个是用过的球.在第一次比赛时,从该盒子中任取2个乒乓球,比赛后仍放回盒子中.在第二次比赛时从这个盒子中任取3个乒乓球,则第二次取出的都是新球的概率为___________.
设离散型随机变量X的概率分布为P{X=i}=cpi,i=1,2,…,其中c>0是常数,则
已知总体X服从参数为p(0<p<1)的几何分布:P{X=x}=(1一p)x-1p(x=1,2,…),X1,…,Xn是来自总体X的简单随机样本,则未知参数p的矩估计量为____________;最大似然估计量为____________.
计算下列各题:(Ⅰ)设,其中f(t)三阶可导,且f″(t)≠0,求;(Ⅱ)设求的值.
若函数f(x)在x=1处的导数存在,则极限=____________.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放多个球,计算下列事件的概率:C={某个指定的盒子不空}.
随机试题
化学堵水剂用高压泵挤入地层,其进入地层后才开始固化,完全固化时间不超过72h。()
不参与构成咽峡的是
白色念珠菌形成的孢子是
A.标准操作规程B.配制规程C.物料D.洁净室E.一般区原料、辅料、包装材料等是()
住房置业担保()。
图示简支梁结构,其截面最大弯矩值为()。
在日益全球化的世界中,会讲两种语言比只会说一种语言具有明显的实际好处——能够与更多的人交流。但近年来,科学家们开始证实,谙熟两种语言还有着更重要的优势,会说两种语言让人更聪明。掌握双语会对人的大脑产生深刻的影响,能提高与语言无关的认知能力,甚至还能防止老年
王清任
ITU标准OC-24和OC-12的传输速率分别为()。
十进制数18转换成二进制数是()。
最新回复
(
0
)