首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对χ>0的空间区域内任意的光滑有向封闭曲面∑都有 χf(χ)dydχ-χyf(χ)dzdχ-ze2χdχdy=0, 其中函数f(χ)在(0,+∞)内具有连续一阶导数,且Rf(χ)=1,求F(χ)。
设对χ>0的空间区域内任意的光滑有向封闭曲面∑都有 χf(χ)dydχ-χyf(χ)dzdχ-ze2χdχdy=0, 其中函数f(χ)在(0,+∞)内具有连续一阶导数,且Rf(χ)=1,求F(χ)。
admin
2017-11-30
81
问题
设对χ>0的空间区域内任意的光滑有向封闭曲面∑都有
χf(χ)dydχ-χyf(χ)dzdχ-ze
2χ
dχdy=0,
其中函数f(χ)在(0,+∞)内具有连续一阶导数,且
Rf(χ)=1,求F(χ)。
选项
答案
根据已知条件,结合高斯公式,有 0=[*]χf(χ)dydz-χyf(χ)dzdχ-ze
2χ
dχdy, =±[*](χf′(χ)+f(χ)-χf(χ)-
2χ
)dV, 其中Ω是由∑围成的有界封闭区域,由∑的任意性可知 χf′(χ)+f(χ)-χf(χ)-e
2χ
=0(χ>0), 即f′(χ)+[*]e
2χ
(χ>0)。 [*] 所以[*](e
2χ
+Ce
χ
)=0,即C+1=0,C=-1。 故f(χ)=[*],χ>0。
解析
转载请注明原文地址:https://kaotiyun.com/show/6fr4777K
0
考研数学一
相关试题推荐
在区间[0,a]上|f’’(x)|≤M,且f(x)在(0,a)内取得极大值.求证:|f’(0)|+|f’(a)}≤Ma.
试证明:曲线恰有三个拐点,且位于同一条直线上.
直线L的方向向量s=(1,2,一3)×(一2,6,0)=(18,6,10),平面π的法向n=(2,一1,一3),所以s.n=18×2+6×(一1)+10×(一3)=0,故s⊥n,即直线L∥平面π,取直线上一点,令z=0,则[*]代入平面方程中,得到:[*]
求直线在平面π:a—y+3z+8=0的投影方程.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为,又设X,Z是否相互独立?为什么?
设随机变量X服从参数为2的指数分布,令,求:U,V的相关系数.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
)设β、β均为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩r(A)≤2;(II)若α,β线性相关,则秩r(A)<2.
随机试题
患者进行肾静态显像,以下哪一项是不正确的
女,8岁。食冷饮时左下后牙感到酸痛2周,无自发痛史,检查发现左下第一磨牙颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩诊(一)。首次就诊时,对该患牙应做的处理为
资产的特征不包括()。
43,36,30,25,18,12,()
女青年甲明知自己的男友乙杀了人,而帮助乙将杀人的匕首藏至自家的衣柜内并帮乙洗干净血衣。甲的行为
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为______.
Whatdoesitmeantorelax?Despite【C1】______thousandsoftimesduringthecourseofourlives,【C2】______havedeeplyconsidered
Thedaywasended—quitesuccessfully,sofarassheknew.TheTrusteesandthevisitingcommitteehadmadetheirrounds,andrea
A、Tomorrowmorning.B、OnThursdayafternoon.C、At3pmthisafternoon.D、Twohoursago.CWhattimeisthistrainleaving,John?
A、Findasuitablejob.B、Workinashoppingmall.C、Starthisownbusiness.
最新回复
(
0
)