首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对χ>0的空间区域内任意的光滑有向封闭曲面∑都有 χf(χ)dydχ-χyf(χ)dzdχ-ze2χdχdy=0, 其中函数f(χ)在(0,+∞)内具有连续一阶导数,且Rf(χ)=1,求F(χ)。
设对χ>0的空间区域内任意的光滑有向封闭曲面∑都有 χf(χ)dydχ-χyf(χ)dzdχ-ze2χdχdy=0, 其中函数f(χ)在(0,+∞)内具有连续一阶导数,且Rf(χ)=1,求F(χ)。
admin
2017-11-30
62
问题
设对χ>0的空间区域内任意的光滑有向封闭曲面∑都有
χf(χ)dydχ-χyf(χ)dzdχ-ze
2χ
dχdy=0,
其中函数f(χ)在(0,+∞)内具有连续一阶导数,且
Rf(χ)=1,求F(χ)。
选项
答案
根据已知条件,结合高斯公式,有 0=[*]χf(χ)dydz-χyf(χ)dzdχ-ze
2χ
dχdy, =±[*](χf′(χ)+f(χ)-χf(χ)-
2χ
)dV, 其中Ω是由∑围成的有界封闭区域,由∑的任意性可知 χf′(χ)+f(χ)-χf(χ)-e
2χ
=0(χ>0), 即f′(χ)+[*]e
2χ
(χ>0)。 [*] 所以[*](e
2χ
+Ce
χ
)=0,即C+1=0,C=-1。 故f(χ)=[*],χ>0。
解析
转载请注明原文地址:https://kaotiyun.com/show/6fr4777K
0
考研数学一
相关试题推荐
设,求y(n)(n>1).
设有曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,试求曲面S上的点及其上的切平面与法线方程,使该切平面与平面π平行;
讨论方程axex+b=0(a>0)实根的情况.
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设,其中L是任一条光滑正向闭曲线,φ(1)=1且原点在其所围成的区域之外.设C为由点A(a,0)(a>0)经过上半平面到点B(一a,0)的任意曲线段,求
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1一θ,p2=θ一θ2,p3=θ2一θ3,p4=θ3,记Ni为X1,X2,…,Xn中出现各种可能的结
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
已知由线积分+[f(x)一x2]dy与路径无关,其中f(x)有连续一阶导数,f(0)=1,则∫(0,0)(1,1)yf(x)dx+[f(x)一x2]dy等于()
求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积.
随机试题
中心性发绀可见于
对于粒径小于0.075mm的土进行土的颗粒分析试验方法应采用()。
FIDIC分包合同中规定,承包商就分包合同的索赔对分包商承担责任的先决条件是( )。
委托监理合同示范文本中,监理人的权利有( )。
衡量一座城市的治理水平,往往不在于建了多少高楼大厦,更要看弱势群体有多大程度的尊严,生活能否得到基本保障。平时如此,疫情防控期间同样如此。防控任务艰巨,要照顾到方方面面,兼顾每一个群体,实属不易,但越是如此,越要关注最需关注的人:大众的生活越是被按下暂停键
宪法的生命在于实施,宪法的权威也在于实施。保证宪法实施就是
攻击者无需伪造数据包中IP地址就可以实施的攻击是
下列叙述中正确的是()。
若结点的存储地址与其关键字之间存在某种映射关系,则称这种存储结构为【】。
Althoughmanyofusmayfeelair-conditionersbringrelieffromhot,humidorpollutedoutsideair,theyposemanypotentialhea
最新回复
(
0
)