首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
admin
2019-09-27
9
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,且
存在.
证明:存在ξ
1
,ξ
2
∈[-a,a],使得a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx,a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
选项
答案
两边积分得∫
-a
a
f(x)dx=[*]∫
-a
a
f
(4)
(ξ)x
4
dx. 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, 两边在[-a,a]上积分得[*], 从而[*], 于是m≤[*]∫
-a
a
f(x)dx≤M, 根据介值定理,存在ξ
1
∈[-a,a],使得f
(4)
(ξ
1
)=[*]∫
-a
a
f(x)dx,或a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/6hS4777K
0
考研数学一
相关试题推荐
曲线积分I﹦(2xey﹢y3sinx-2y)dx﹢(x2ey-3y2cosx-2x)dy,其中曲线为圆x2﹢y2﹦4上位于第一象限的弧,即A(2,0)到B(0,2)的弧,则积分I﹦______。
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
设x,y,z∈R+。求u(x,y,z)=lnx+lny+31nz在球面x2+y2+z2=5R2上的最大值,并证明:当a>0,b>0,c>0时,有
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,Г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx+Q
求不定积分
证明:用二重积分证明
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,…,Xn是来自总体X的一个简单随机样本,X为样本均值.(Ⅰ)求参数θ的矩估计量,并判断它是否是θ的无偏估计量和相合估计量;(Ⅱ)求参数θ的最大似然估计量,并判断它是否是θ的无偏估计量.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2.判断βαT是否相似于对角矩阵(要说明理由).
随机试题
A、Thebirdwasdead.B、Thebirdwasalive.C、It’shardtoanswerthequestion.D、Hefoundoutthechildren’strick.D
病理性中性粒细胞增多常见于以下哪些疾病
甲、乙双方因工程款纠纷引发诉讼,案件经过两级法院审理终结。由于对二审判决结果不服,甲欲向上一级人民法院申请再审。甲提出的下列事实和理由不能得到法院准许的有()。
根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的技术处理方案。
注册会计师可以利用检查文件资料的程序来进行控制测试和实质性程序,但在不同种类的测试中,检查的对象是不同的。( )分析程序具有很强的预期性,它不仅可以帮助注册会计师发现财务报表中的已发生的异常变化,或者预期发生而未发生的变化,还可以帮助注册会计师发现财
对于一般中暑旅游者,可将其置于阴凉通风处、能时让其饮用含盐饮料、解开衣领,放松裤带。()
随着商品流通,贸易往来、人际交流的越来越______,远古时代那种依靠步行的交通方式以及手提、肩扛、头顶的运输方式已很难适应社会发展的需要,于是交通运输设施的兴建与运输工具的制造便_______。
1/2,1/3,3/10,2/7,5/18,()
我国现行宪法规定,全国人大常委会的组成人员中,应当有适当名额的()。
A、Hecan’texplaintheinstructionsclearly.B、Hespeakstoofast.C、Hedoesn’tunderstandtheinstructionsclearly.D、Heisde
最新回复
(
0
)