首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,…,Xn是来自总体X的一个简单随机样本,X为样本均值. (Ⅰ)求参数θ的矩估计量,并判断它是否是θ的无偏估计量和相合估计量; (Ⅱ)求参数θ的最大似然估计量,并判断它是否是θ的无偏估计量.
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,…,Xn是来自总体X的一个简单随机样本,X为样本均值. (Ⅰ)求参数θ的矩估计量,并判断它是否是θ的无偏估计量和相合估计量; (Ⅱ)求参数θ的最大似然估计量,并判断它是否是θ的无偏估计量.
admin
2019-01-24
43
问题
设总体X~U[θ,2θ],其中θ>0是未知参数,X
1
,X
2
,…,X
n
是来自总体X的一个简单随机样本,X为样本均值.
(Ⅰ)求参数θ的矩估计量,并判断它是否是θ的无偏估计量和相合估计量;
(Ⅱ)求参数θ的最大似然估计量,并判断它是否是θ的无偏估计量.
选项
答案
(Ⅰ)由于总体X~U[θ,2θ],故由矩估计方程[*],解得参数θ的矩估计量为[*]. 因为[*]是参数θ的无偏估计量. 又因为[*]是参数θ的相合估计量. (Ⅱ)设x
1
,x
2
,…,x
n
为随机样本对应的观测值,则似然函数为[*],似然函数非零区域为θ≤x
i
≤2θ(i=1,2,…,n).令x
(1)
=min{x
1
,x
2
,…,x
n
},x
(n)
=max{x
1
,x
2
,…,x
n
),则θ≤x
(1)
≤x
(n)
≤2θ,即[*],又由[*]关于θ是单调减少的,则当[*]时,L(θ)达到最大,所以参数θ的最大似然估计量为[*],其中X
(n)
=max{X
1
,X
2
,…,X
n
).由于X
(n)
的概率密度为 [*] 所以[*]不是参数θ的无偏估计量.
解析
转载请注明原文地址:https://kaotiyun.com/show/9vM4777K
0
考研数学一
相关试题推荐
设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
证明:当x>0时,arctanx+.
设f(x)二阶连续可导,且f(0)=f’(0)=0,f’’(0)≠0,设μ(x)为曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距,求.
设A为n阶可逆矩阵(n≥2),则[(A*)*]-1=_________(用A*表示).
,问a,b,c取何值时,(Ⅰ),(Ⅱ)为同解方程组?
设f(x)二阶可导,f(0)=0,令g(x)=求g’(x);
将函数f(x)=2+|x|(一1≤x≤1)展开成以2为周期的傅里叶级数,并求级的和.
设f(x,y,z)是连续函数,∑是平面x—y+z—1=0在第四卦限部分的上侧,计算[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy.
计算,其中∑为下半球面的上侧,a为大于零的常数.
问λ取何值时,齐次线性方程组,有非零解.
随机试题
甲公司从2013年1月1日起对期末存货采用成本与可变现净值孰低计价,成本与可变现净值的比较采用单项比较法。该公司2013年12月31日X、Y、Z三种存货的成本分别为:30万元、25万元、34万元;X、Y、Z三种存货的可变现净值分别为:32万元、22万元、3
教学过程的一个必要环节,深刻领会知识并学以致用的必要前提是()
A.主动干预B.教育干预C.技术干预D.强制干预E.紧急处置给家长和儿童讲解交通法规属于预防意外伤害的()
该租赁合同的性质为()。若本案中双方未约定租赁期限,甲、乙双方又无法就租赁期限协议补充,下列关于合同解除的说法正确的是()。
编制预算时,SF6全封闭组合电器(GIS)安装高度在10m以上时,定额如何套用?
如果一家盈利上市公司的债权人转成了公司的股东,即实施了债转股,由此会使该公司()。
信赖利益( )履行利益是一项基本原则。
Document outputs are produced on(71), devices that produce text or images on paper.
A、Negotiatewithhisboss.B、Calmdownandwaitfortherighttime.C、Quithisjobandgetabetterone.D、Tryhardertobeprom
A、She’sunimpressedbywhatthemantoldher.B、Shedoubtsshecanaffordit.C、Shedoesn’tthinkit’ssuitableforher.D、She’s
最新回复
(
0
)