首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( )
设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( )
admin
2021-01-19
43
问题
设向量组,α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数k,必有( )
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关。
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关。
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关。
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关。
答案
A
解析
方法一:由题知,α
1
,α
2
,α
3
,β
2
线性无关,α
1
,α
2
,α
3
,β
1
线性相关,则存在k
1
,k
2
,k
3
使β
1
=k
1
α
1
+k
2
α
2
+k
3
α
3
,于是通过列初等变换有(α
1
,α
2
,α
3
,kβ
1
+β
2
)→(α
1
,α
2
,α
3
,β
2
)。因此
r(α
1
,α
2
,α
3
,kβ
1
+β
2
)=r(α
1
,α
2
,α
3
,β
2
)=4,故α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,选A。
方法二:取k=0,由条件知向量组α
1
,α
2
,α
3
,β
2
线性无关,α
1
,α
2
,α
3
,β
1
线性相关,所以应该排除B,C。
取k=1,因β
1
可由α
1
,α
2
,α
3
线性表出,β
2
不能由α
1
,α
2
,α
3
线性表出,所以α
1
,α
2
,α
3
,β
1
+β
2
线性无关,因而可排除D。故答案选A。
方法三:对任意常数k,向量组α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关。用反证法,若α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关,因已知α
1
,α
2
,α
3
线性无关,故kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表出。即存在常数λ
1
,λ
2
,λ
3
,使得kβ
1
+β
2
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
。
又已知β
1
可由α
1
,α
2
,α
3
线性表出,即存在常数l
1
,l
2
,l
3
,使得β
1
=l
1
α
1
+l
2
α
2
+l
3
α
3
代入上式,得
kβ
1
+β
2
=k(l
1
α
1
+l
2
α
2
+l
3
α
3
)+β
2
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
β
2
=(λ
1
一kl
1
)α
1
+(λ
2
一kl
2
)α
2
+(λ
3
一kl
3
)α
3
。
与β
2
不能由α
1
,α
2
,α
3
线性表出矛盾。故向量组α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,选A。
转载请注明原文地址:https://kaotiyun.com/show/6j84777K
0
考研数学二
相关试题推荐
设函数f(x)连续可导,且f(0)=0,F(x)=∫0xtn一1f(xn一tn)dt,求.
计算其中Ω为x2+y2+z2≤1所围成的区域.
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
讨论函数f(χ)=的连续性,并指出间断点的类型.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
微分方程y〞+y=-2χ的通解为_________.
设二元函数u=u(χ,y)有二阶连续偏导数,并满足方程=0,且u(χ,2χ)=χ,u′χ(χ,2χ)=χ2,求u〞χχ(χ,2χ),u〞χy(χ,2χ),u〞yy(χ,2χ).
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…).(I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn;(Ⅱ)求(I)中的{xn)的极限值.
设函数f(x)在区间(0,+∞)上可导,且fˊ(x)>0,求F(x)的单调区间,并求曲线y=F(x)的凹凸区间及拐点坐标.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>-,证明(1)中的c是唯一的.
随机试题
小儿尿道感染常见的致病菌是
现金比率用于分析企业的短期偿债能力,所以,现金比率越大越好。()
对企业从事港口码头、机场、铁路、公路、电力、水利等项目投资经营所得,给予“两免三减半”的优惠。()
对下列课例进行点评分析。爱尔兰民间舞蹈——踢踏舞【教学目标】1.通过对爱尔兰民族经典音乐剧《大河之舞》选段的欣赏与分析,培养对踢踏舞学习的兴趣。2.学习踢踏舞基本动作,能够掌握踢踏舞的舞步特点。3.培养节奏的表现力和舞蹈的创
苏霍姆林斯基说:“只有集体和教师首先看到学生的优点,学生才能产生上进心。”这句话提示教师()。
下列各项中,可能成为行政主体的是()。
饥渴营销指通过各种限量策略或限时策略,以充分引起消费者的关注和重视.激发消费者的购买欲望,从而实现产品由厂商到消费者的快速转移。根据上述定义,下列属于饥渴营销的是:
若f(x)是以3为周期的奇函数,g(x)是以2π为周期的偶函数,
设y=2e-x+exsinx为y"+py"+qy′+ry=0的特解,则该方程为___________.
符号%是声明______类型变量的类型定义符。
最新回复
(
0
)