首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( )
设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( )
admin
2021-01-19
38
问题
设向量组,α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数k,必有( )
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关。
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关。
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关。
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关。
答案
A
解析
方法一:由题知,α
1
,α
2
,α
3
,β
2
线性无关,α
1
,α
2
,α
3
,β
1
线性相关,则存在k
1
,k
2
,k
3
使β
1
=k
1
α
1
+k
2
α
2
+k
3
α
3
,于是通过列初等变换有(α
1
,α
2
,α
3
,kβ
1
+β
2
)→(α
1
,α
2
,α
3
,β
2
)。因此
r(α
1
,α
2
,α
3
,kβ
1
+β
2
)=r(α
1
,α
2
,α
3
,β
2
)=4,故α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,选A。
方法二:取k=0,由条件知向量组α
1
,α
2
,α
3
,β
2
线性无关,α
1
,α
2
,α
3
,β
1
线性相关,所以应该排除B,C。
取k=1,因β
1
可由α
1
,α
2
,α
3
线性表出,β
2
不能由α
1
,α
2
,α
3
线性表出,所以α
1
,α
2
,α
3
,β
1
+β
2
线性无关,因而可排除D。故答案选A。
方法三:对任意常数k,向量组α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关。用反证法,若α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关,因已知α
1
,α
2
,α
3
线性无关,故kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表出。即存在常数λ
1
,λ
2
,λ
3
,使得kβ
1
+β
2
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
。
又已知β
1
可由α
1
,α
2
,α
3
线性表出,即存在常数l
1
,l
2
,l
3
,使得β
1
=l
1
α
1
+l
2
α
2
+l
3
α
3
代入上式,得
kβ
1
+β
2
=k(l
1
α
1
+l
2
α
2
+l
3
α
3
)+β
2
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
β
2
=(λ
1
一kl
1
)α
1
+(λ
2
一kl
2
)α
2
+(λ
3
一kl
3
)α
3
。
与β
2
不能由α
1
,α
2
,α
3
线性表出矛盾。故向量组α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,选A。
转载请注明原文地址:https://kaotiyun.com/show/6j84777K
0
考研数学二
相关试题推荐
求微分方程y〞+2y′-3y=(2χ+1)eχ的通解.
设u=,其中f(s,t)二阶连续可偏导,求du及
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(2)证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且并
讨论函数f(x)=的连续性.
设函数f(x)连续可导,且f(0)=0,F(x)=∫0xtn一1f(xn一tn)dt,求.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续.②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
设,B为三阶非零矩阵,且满足,BA=0,则当λ满足________时,B的秩恰为1.
设f(x)=2x+3x一2,则当x→0时()
随机试题
超声造影在心血管系统中不适用于下列哪种情况
男孩,19岁。发现右大腿下端内侧硬性突起,无疼痛,膝关节运动尚好。最可能的诊断是
行导尿术时护士未用屏风遮挡,导致投诉。其行为应视为
应急预案演练准备工作主要有制订演练计划,设计演练方案,演练动员与培训,应急预案演练保障。下列选项中不属于制订演练计划的是()。
人的书写习惯形成之后,具有在相当长的时间内保持相对不变的特性。这种相对稳定性是由条件反射的强弱规律所界定的。因为一个人从学到练习书写到书写动力定型的形成,一般都要经过较长的时间。在此时间内形成的条件反射的刺激次数和强度都在日益加大,从而使自动化锁链系统也就
(2018年四川成都事业)根据我国《行政诉讼法》的规定,行政诉讼举证责任的主要承担者是()。
Youaretheveryman______Ihavebeenlookingfor.
传统以太网帧的数据部分的最大长度是()。
Theautomobile,alongwithahouseandagarden,is【C1】______oftheAmericanDream.The【C2】______had1.8vehicles;eachvehic
______forthetimelyinvestmentfromthegeneralpublic,hiscompanywouldnotbesothriving.
最新回复
(
0
)