首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
admin
2019-06-29
74
问题
求函数f(x,y)=x
2
+xy+y
2
在闭区域D={(x,y)|x
2
+y
2
≤1}上的最大值和最小值。
选项
答案
由于所给的区域D是闭区域(包括边界),故属于混合型的情况。 先考虑函数f(x,y)在区域D内部{(x,y)|x
2
+y
2
<1}的极值,这属于无条件极值, 解线性方程组 [*] 得 x=0,y=0。 在(0,0)点,有 f”
xx
=2>0,f”
xy
=1,f”
yy
=2, 因为 f”
xx
f”
yy
-f”
yy
>0, 所以(0,0)点是函数的极小值点,极小值为f(0,0)=0。 再考虑函数f(x,y)在区域D的边界{(x,y)|x
2
+y
2
=1}上的极值,这是条件极值问题,作拉格朗日函数 L(x,y,t)=x
2
+xy+y
2
-t(x
2
+y
2
-1), 求偏导得方程组 [*] 将第一式乘以x,第二式乘以y然后相加,结合第三式得到 f(x,y)=t(x
2
+y
2
)=t。 由x
2
+y
2
=1可知,二元一次方程组[*] 有非零解,故系数行列式等于零,即 4t
2
-8t+3=0, 解得[*]。 由于连续函数在闭区间上必可取到最大值和最小值,故f(x,y)在边界上的最大值为[*],最小值为[*]。 综上所述,f(x,y)在闭区域D上的最大值为[*],最小值为0。
解析
转载请注明原文地址:https://kaotiyun.com/show/BzN4777K
0
考研数学二
相关试题推荐
将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设矩阵,且方程组Ax=β无解。求a的值;
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。P为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
矩阵相似的充分必要条件为()
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3。证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f’(ξ)+f’(η)=ξ2+η2。
利用代换y=u/cosx将方程y"cosx-2y’sinx+3ysinx=ex化简,并求出原方程的通解。
求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n)(0)(n≥3)。
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
随机试题
氨基苷类抗生素不具有的药理作用是
[2007年,第18题]微分方程y’’-4y=4的通解是:(C1,C2为任意常数)()。
在其他条件均相同的情况下,关于岩溶发育程度与地层岩性关系的下列说法中,()是正确的。
在计算某建设项目内部收益率时,当i=14%,净现值为800万元;当i=18%,净现值为-200万元。则该项目内部收益率为()。
下列合同中存在受益人的是( )。
下列不属于温室气体的是()。
行政赔偿程序和司法赔偿程序的区别在于()。
在“凡尔赛体系”中丧失领土和属地最多的国家是()。
下列属于探究活动为主的教学方法是()。
只能在建立它的模块中使用的变量为()。
最新回复
(
0
)