首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(a)|≤Ma.
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(a)|≤Ma.
admin
2019-06-28
46
问题
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(a)|≤Ma.
选项
答案
f(x)在(0,a)内取得极大值,不妨设f’(c)=0. f’(x)在[0,c]与[c,a]之间分别使用拉格朗日中值定理, f’(c)一f’(0)=cf"(ξ
1
),ξ
1
∈(0,c), f’(a)一f’(c)=(a一c)f"(ξ
2
),ξ
2
∈(c,a), 所以 |f’(0)|+|f’(a)|=c|f"(ξ
1
)|+(a一c)|f"(ξ
2
)| ≤cM+(a一c)M=aM.
解析
转载请注明原文地址:https://kaotiyun.com/show/BpV4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
已知方程组(1)与方程(2)x1+5x3=0,则(1)与(2)的公共解是________。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η*,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_________。
η1,η2是n元齐次方程组Ax=0的两个不同的解,若r(A)=n一1,则Ax=0的通解为()
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)