首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
admin
2022-04-10
124
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(Ⅰ)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(Ⅱ)设
,求出可由两组向量同时表示的向量.
选项
答案
(Ⅰ)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
使得k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=一l
1
β
1
—l
2
β
2
. 令γ=k
1
α
1
+k
2
α
2
=一l
1
β
1
因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
,k
2
及l
1
,l
2
都不全为零,所以γ≠0. (Ⅱ)令k
1
α
2
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,[*]则[*],所以γ=kα
1
—3kα
2
=一kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQR4777K
0
考研数学三
相关试题推荐
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.(1)求(I)的一个基础解系;(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设当x≥0时f(x)有一阶连续导数,且满足求f(x).
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C若α1,α2,…,αs线性无关.证明:r(β1,β2,…,βt)=r(C).
设总体X的概率密度为其中θ是未知参数(0
已知二维非零向量X不是二阶方阵A的特征向量.(1)证明X,AX线性无关;(2)若A2X+AX-6X=0,求A的特征值,并讨论A可否对角化.
曲线的切线与X轴和Y轴围成一个图形,记切点的横坐标为a.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设二次型的正、负惯性指数都是1.当x满足xTx=2时,求f的最大值与最小值.
设a1=4,an+1=an存在,并求此极限.
求下列极限:
随机试题
江山房地产开发公司通过公开招标的方式与宏达建筑公司签订建设工程施工合同。将其开发的盛世豪庭住宅项目交予宏达建筑公司进行施工建设。请据此回答以下问题。若该建设工程竣工且经验收质量合格,但江山房地产公司拒付合同约定的工程价款。已知建设工程已经部分抵押给银行
一份执行政府定价的买卖合同,买方逾期提货,则()。
下列项目中免征土地增值税的是( )。
A公司通过其在中国的30家店铺销售多种高质量的运动服和运动鞋。在国家经济不断增长的情况下,该公司目前是盈利的,但这几年的利润空间一直在减少,公司尚未对此查明原因。每家店铺均采用电子系统记录库存。所有商品都由各店铺提供详细的产品要求,然后由驻孟加拉国的总部集
对管理者的培训通常包括()。
资本周转的时间包括()。
统计结果表明,就糖尿病的发病率看,城市为农村的近三倍,有人认为这归咎于城市人高脂肪、高蛋白、高热量食物的高摄入量。而农村相对较少有人具备这种“富贵病”的条件。其实,这种看法很难成立,因为它忽略了这样一个事实:目前城市人均寿命高于80岁,而农村的则不到60岁
公众充权:指在公共政策的制定、执行、评估、监督过程中,公众积极参与,充分表达自己的利益主张,以推动公共政策过程的民主化与科学化。下列属于公众充权的是
(1)求函数项级数e-x+2e-2x+…+ne-nx+…收敛时x的取值范围;(2)当上述级数收敛时,求其和函数S(x),并求∫ln2ln3S(x)dx.
Thestoryofthe【S1】______Titaniccontinuesto【S2】______peopletodaypartlybecauseofthe1998Hollywoodmovies,Titanic.Peopl
最新回复
(
0
)