首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内一阶连续可导,且=1.证明:(-1)nf()收敛,而f()发散.
设f(x)在(-∞,+∞)内一阶连续可导,且=1.证明:(-1)nf()收敛,而f()发散.
admin
2019-11-25
45
问题
设f(x)在(-∞,+∞)内一阶连续可导,且
=1.证明:
(-1)
n
f(
)收敛,而
f(
)发散.
选项
答案
由[*]=1得f(0)=0,f’(0)=1,于是f([*])=f’(ξ)[*](0<ξ<[*]). 因为[*]f’(x)=f’(0)=1,所以存在δ>0,当|x|<δ时,f’(x)>0, 于是存在N>0,当n>N时,[*]<δ, f([*])>f(0)=0,f([*])<f([*]),且[*]=0, 由莱布尼茨审敛法知[*](-1)
n
f([*])收敛, 因为f([*])=f’(ξ)[*]且[*]发散,所以[*]发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/6nD4777K
0
考研数学三
相关试题推荐
设(a>0,b>0),求y’.
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
设X1,X2为独立的连续型随机变量,分布函数分别为F1(x),F2(x),则一定是某一随机变量的分布函数的为()
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1)亏损的概率α;(2)一年获利润不少于40000
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
随机试题
在Windows中,双击窗口的控制菜单图标,实现的操作是
A.颊部蝶形红斑B.口、眼干燥,猖獗性龋齿C.雷诺现象D.Gottron皮疹E.关节肿痛原发性干燥综合征的常见表现为
A.钙B.铁C.锌D.钾E.钠在人体骨骼和牙齿中最多的是
A.停止性龋B.单纯性龋C.猖獗性龋D.环状龋E.奶瓶龋
项目建议书阶段的投资估算的方法有()等。
一般情况,下列( )不是开发区环境影响评价实施方案的基本内容。
局域网中,提供并管理共享资源的计算机称为()。
Afterreceivingtwomajorclothingordersinasinglemonth,ZeusCouture’smanagerdecidedtoinvestinseveralsewingmachines
Placingahumanbeingbehindthewheelofanautomobileoftenhasthesamecuriouseffectascuttingcertainfibersinthebrain
Acarmainlyconsists______abody,anengine,andfourwheels.
最新回复
(
0
)