首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,r(A)=m<n,则下列命题中不正确的是
设A是m×n矩阵,r(A)=m<n,则下列命题中不正确的是
admin
2018-06-15
48
问题
设A是m×n矩阵,r(A)=m<n,则下列命题中不正确的是
选项
A、A经初等行变换必可化为(E
m
,0).
B、
b∈R
m
,方程组Ax=b必有无穷多解。
C、如m阶矩阵B满足BA=0,则B=0.
D、行列式|A
T
A|=0.
答案
A
解析
例如,
,只用初等行变换就不能化为(E
2
,0)形式,(A)不正确.故应选(A).
因为A是m×n矩阵,m=r(A)≤r(A|b)≤m.于是r(A)=r(A|b)=m<n.(B)正确.
由BA=0知r(B)+r(A)≤m,又r(A)=m,故r(B)=0,即B=0.(C)正确.
A
T
A是n阶矩阵,r(A
T
A)≤r(A)=m<n,故|A
T
A|=0,即(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/6xg4777K
0
考研数学一
相关试题推荐
设L为曲线x2+y2=R2(常数R>0)一周,n为L的外法线方向向量,u(x,y)具有二阶连续偏导数且
求函数f(x,y,z)=x2+y2+z2在区域x2+y2+z2≤z+y+z内的平均值.
市场上有两种股票,股票A的价格为60元/股,每股年收益为R1元,其均值为7,方差为50.股票B的价格为40元/股,每股年收益为R2元,其均值为3.2,方差为25,设R1和R2互相独立.某投资者有10000元,拟购买s1股股票A,s2股股票B,剩下的s3元存
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[-1,1,4,-1]T,α3=[5,-1,-8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
定积分中值定理的条件是f(x)在[a,b]上连续,结论是________
设P(x,y),Q(x,y)在全平面有连续偏导数,且对以任意点(x0,y0)为中心,以任意正数r为半径的上半圆L:x=x0+rcosθ,y=y0+rsinθ(0≤θ≤π),恒有∫LP(x,y)dx+Q(x,y)dy=0.求证:
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=____________.
设总体X服从正态分布N(μ,σ2),其中σ2为已知,则当样本容量n一定时,总体均值μ的置信区间长度l增大,其置信度1一α的值
设一批零件的长度服从正态分布N(μ,σ2),其中σ2已知,μ未知.现从中随机抽取n个零件,测得样本均值,则当置信度为0.90时,判断μ是否大于μ0的接受条件为
随机试题
喉的横断层解剖特点。
女,3岁。自幼体弱,多次患肺炎。查体:于胸骨左缘第2肋间闻及连续性机器样杂音,有震颤,肺动脉第二音亢进,脉压增宽。最可能的诊断是
甲房地产公司与乙国有工业公司签订《合作协议》,在乙公司原有的仓库用地上开发商品房。双方约定,共同成立“玫园置业有限公司”(以下简称“玫园公司”)。甲公司投入开发资金,乙公司负责将该土地上原有的划拨土地使用权转变为出让土地使用权,然后将出让土地使用权作为出资
下列属于直接作用的有()
下列关于编辑工作在出版工作中的地位的说法,正确的有()。
1967年,BanuchBlumberg博士发现了乙肝病毒(HBVDNA),并因此获得1976年诺贝尔生理学和医学奖。自病毒发现伊始,人类就开始了与乙肝病毒的拉锯战。1986年,首个干扰素问世,打响了乙肝抗病毒治疗的第一枪;1999年,首个抗击乙肝病毒
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Withitscommoninterestinlawbreakingbutitsimmenserangeofsubject-matterandwidely-varyingmethodoftreatment,thecrim
8.______wasgivenbythecommitteetoallofthosewhodonatedmoney.
A、Whereisthemanagernow?B、Whowillbehisnewmanager?C、Whetherhismanagerisill.D、Whenthemanagerwillgototheheadq
最新回复
(
0
)