首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明存在非0的n阶矩阵B使AB=0的充分必要条件是|A|=0.
设A是n阶矩阵,证明存在非0的n阶矩阵B使AB=0的充分必要条件是|A|=0.
admin
2016-10-26
87
问题
设A是n阶矩阵,证明存在非0的n阶矩阵B使AB=0的充分必要条件是|A|=0.
选项
答案
必要性.对零矩阵及矩阵B按列分块,设B=(β
1
,β
2
…,β
n
),那么 AB=A(β
1
,β
2
,…,β
n
)=(Aβ
1
,Aβ
2
…,Aβ
n
)=(0,0,…,0)=0. 于是Aβ
i
=0(j=1,2,…,n),即β
i
是齐次方程组Ax=0的解. 由B≠0,知Ax=0有非0解.故|A|=0. 充分性.因为|A|=0,所以齐次线性方程组Ax=0有非0解.设β是Ax=0的一个非零解, 那么,令B=(β,0,0,…,0),则B≠0.而AB=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/72u4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 A
A、 B、 C、 D、 B
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
(1998年试题,一)设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为___________.
随机试题
与鉴别脑膜炎奈瑟茵和淋病奈瑟茵有关的试验是
混凝土拌和系统废水宜进行()。
办理个人住房贷款,贷前咨询的内容包括()。
王某依照《公司法》设立了一人有限责任公司。公司存续期间,王某实施的下列行为中,违反了《公司法》规定的是()。
在教育心理学的发展史中,教育学与心理学背离的时期是()
40年改革开放极大改变了中国的面貌、中华民族的面貌、中国人民的面貌、中国共产党的面貌。我们迎来的伟大飞跃有:
有一商家为了推销其家用电脑和网络服务,目前正在大力开展网络消费的广告宣传和推广促销。经过一定的市场分析,他们认为手机用户群是潜在的网络消费用户群,于是决定在各种手机零售场所宣传、推销他们的产品。结果两个月下来,效果很不理想。以下哪项如果为真,最有助于解释出
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
下列选项中不属于Java虚拟机的执行特点的是( )。
下列叙述中正确的是
最新回复
(
0
)