首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数? (1)f(x2) (2)xf(x2) (3)x2f(x) (4)f2(x) (5)f(|x|)
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数? (1)f(x2) (2)xf(x2) (3)x2f(x) (4)f2(x) (5)f(|x|)
admin
2011-12-29
108
问题
函数f(x)在(-∞,+∞)内有定义,f(x)不恒等于1,下列给出的函数哪些必为奇函数?哪些必为偶函数?
(1)f(x
2
) (2)xf(x
2
)
(3)x
2
f(x) (4)f
2
(x)
(5)f(|x|) (6)|f(x)|
(7)f(x)+f(-x) (8)f(x)-f(-x)
选项
答案
(1)设g(x)=f(x
2
),则g(-x)=f((-x)
2
)=f(x
2
)=g(x) ∴f(x
2
)必为偶函数. (2)设g(x)=xf(x
2
),则g(-x)=(-x)f[(-x)
2
]=-xf(x
2
)=-g(x) ∴xf(x
2
)必为奇函数. (3)设g(x)=x
2
f(x),则g(-x)=(-x)
2
f(-x)=x
2
f(-x) ∵f(-x)奇偶性不能确定 ∴x
2
f(x)奇偶性不定. (4)设g(x)=f
2
(x),则g(-x)=f
2
(-x)≠f
2
(x)且f
2
(x)≠-f
2
(x) ∴f
2
(x)奇偶性不定. (5)设g(x)=f(|x|),则g(-x)=f(|x|)=f(|x|)=g(x) ∴f(| x |)必为偶函数. (6)设g(x)=|f(x)|,则g(-x)=| f(-x)|≠|f(x)|且|f(-x)|≠-|f(x)| ∴|(x)|奇偶性不定. (7)设g(x)=f(x)+f(-x),则 g(-x)=f(-x)+f[-(-x)]=f(-x)+f(x)=g(x) ∴f(x)+f(-x)必偶函数. (8)设g(x)=f(x)-f(-x),则 g(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=[f(x)-f(-(x))]=-g(x) ∴f(x)-f(-x)必为奇函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7I54777K
0
考研数学一
相关试题推荐
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
(12年)已知函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex.(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点.
(2001年试题,十一)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位阵,求X.
(14)设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3的负惯性指数为1,则a的取值范围是______.
[2001年]设函数y=f(x)由方程e2x+y一cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_________.
[2016年]已知函数f(x)在(一∞,+∞)上连续,且f(x)=(x+1)2+2∫0xf(t)dt,则当n≥2时,f(n)(0)=_________.
(14年)设z=z(x,y)是由方程e2yz+x+y2+z=确定的函数,则
(11年)已知函数F(x)=试求α的取值范围.
随机试题
简述通货膨胀会计对传统财务会计一般原则的重大发展。
患者左肾盂单个结石约1.2cm大小,右肾盏多发结石,IVU显示双肾积水,处理首先应是
急性心肌梗死患者发病24小时内死亡的主要原因是()
初产妇第一产程活跃期延长是指活跃期时间超过
水利水电工程基础施工中,属于Ⅲ级土的是()。
寄小读者的信 亲爱的小朋友: 感谢《北京日报》,它让我占用报纸的篇幅,来给小朋友们写一封公开的回信。 这些年来,我几乎每天都会得到全国各地,甚至海外的小朋友们的信。在这些笔迹端
双眼视差是()知觉的重要线索。
I/O控制方式有多种,(5)一般用于大型、高效的系统中。
Makeyourpayroll(工资表)fasterandeasierwithourEasyOnlinePayroll!Ifyou’respendingmoretimethan10minutesaweekor
A、PayingoffChristmasbills.B、Tryingtoearnmoremoney.C、PreparingforChristmas.D、Limitinghiswife’sexpense.C
最新回复
(
0
)