首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. (Ⅰ)求f(x); (Ⅱ)求u(x,y)的一般表达式.
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. (Ⅰ)求f(x); (Ⅱ)求u(x,y)的一般表达式.
admin
2021-10-02
114
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式
[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy
为某二元函数u(x,y)的全微分.
(Ⅰ)求f(x);
(Ⅱ)求u(x,y)的一般表达式.
选项
答案
(Ⅰ)由题意知, du=[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy, 即 [*]=f(x)+x
2
y. 由于f(x)具有一阶连续导数,所以u的二阶混合偏导数连续,所以有 [*] 即有x(1+2y)一f(x)=f’(x)+2xy, f(x)+f(x)=x. 连同已知f(0)=0,可求得f(x)=x一1+e
—x
. (Ⅱ)由(Ⅰ)知du=(xy
2
+y—ye
—x
)dx+(x一1+e
—x
+x
2
y)dy. 求u(x,y)有多种方法. 凑微分法. du=(xy
2
+y—ye
—x
)dx+(x—1+e
—x
+x
2
y)dy =xy(ydx+xdy)+(ydx+xdy)+(一ye
—x
dx+e
—x
dy)一dy =d[[*](xy)
2
+xy+ye
—x
一y], 所以u(x,y)=[*](xy)
2
+xy+y
—x
—y+C(C为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/7Kx4777K
0
考研数学三
相关试题推荐
若n阶非奇异矩阵A的各行元素之和为2,则A-1+A2必有一个特征值为().
A、 B、 C、 D、 D
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性.
设则有
由曲线y=(0≤x≤π)与x轴围成的平面图形绕x轴旋转一周而成的旋转体体积为()
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
(12年)计算二重积分eχχydχdy,其中D是以曲线及y轴为边界的无界区域.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值.试证A可对角化,并求对角阵A;
计算三对角行列式
随机试题
葡萄胎随访时必须进行的检查是
上颌磨牙进行全冠修复时,为避免食物嵌塞应有哪种观念A.生物力学B.生物材料学C.动态D.静态E.形态学
患儿,10个月,因发热,咳嗽,惊厥来院就诊,体检:体温39.8℃,咽充血,前囟平。该患儿惊厥的原因可能是
本题涉及土地增值税法及企业所得税法。府城房地产开发公司为内资企业,公司于2015年1月—2018年2月开发“东丽家园”住宅项目,发生相关业务如下:(1)2015年1月通过竞拍获得一宗国有土地使用权,合同记载总价款17000万元,并规定2015年3月1日动
读图文材料。葡萄酒用新鲜葡萄或葡萄汁酿造而成。近年来。我国葡萄酒产量及消费量快速增长。据图文材料分析。影响葡萄酒产业布局最主要的一组区位因素是()。
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
Imeanttogiveyouthisbooktoday,butIforgot.
A、Peoplecansurviveifluckyenough.B、Thechanceisverysmall.C、Theycanbeprevented.D、Thepossibilitycanbeignored.B由句
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
Itisessentialtobuildupyourconfidence____________(如果你想在一生中有所成就的话).
最新回复
(
0
)