首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
admin
2019-01-23
79
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+2α
2
+2α
3
,Aα
2
=2α
1
+α
2
+2α
3
,Aα
3
=2α
1
+2α
2
+α
3
.
(1)求A的特征值.
(2)判断A是否相似于对角矩阵?
选项
答案
(1)用矩阵分解: A(α
1
,α
2
,α
3
)=(α
1
+2α
2
+2α
3
,2α
1
+α
2
+2α
3
,2α
1
+2α
2
+α
3
)=(α
1
,α
2
,α
3
)B, 这里B=[*] 从α
1
,α
2
,α
3
线性无关的条件知道,(α
1
,α
2
,α
3
)是可逆矩阵.于是A相似于B. [*] [*]的秩为1,其特征值为0,0,6. 得B的特征值为-1,-1,5.则A的特征值也为-1,-1,5. (2)B是实对称矩阵,一定相似于对角矩阵,由相似的传递性,A也相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/7MM4777K
0
考研数学一
相关试题推荐
设y=ex,求dy和d2y:x=x(t),t为自变量,x(t)二阶可导.
求
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x一x0)>f(x).(*)
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
设y=y(x)是由确定的隐函数,求y’(0)和y’’(0)的值.
设向量组B:b1…,br能由向量组A:a1,…as线性表示为(b1…br)=(a1…,as)K,其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求:P{U>D(U)|U>E(U)}.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
计算曲线积分,其中L为不经过原点的逆时针光滑闭曲线.
边长为a和b的矩形薄板与液面成α角斜沉于液体内,长边平行于液面位于深h处,设a>b,液体的比重为γ,求薄板受的液体压力.
随机试题
原位癌的特点不包括()
盆腔炎定义为
A.埃索美拉唑B.雷贝拉唑C.泮妥拉唑D.奥美拉唑E.兰索拉唑以单一光学异构体上市的不可逆质子泵抑制剂的药物是
胃癌最易发生于()。
某机电安装工程项目,业主通过公开招标方式选择了某机电安装企业,双方签订了机电安装工程施工总承包合同,施工总承包企业又选择了一家劳务分包企业,将某分部工程的劳务作业分包给该劳务分包企业。在施工过程中发生如下事件。事件一:由于业主供应的工程材料延误,使
以欺诈手段订立的合同,如果损害了国家利益,该合同应属于无效合同,而不是可撤销合同。()
“艰苦奋斗,玉汝于成”“一粥一饭,当思来之不易”“半丝半缕,恒念物力维艰”这些名言警句对我们的启示是()。
教学策略是对教学活动进行调节控制的一系列执行过程,不包括()。
从公共产品与公共行政关系角度看,政府的本质属性之一是必须遵循()。
Don’tkeepusin______—didyougetthejobornot?
最新回复
(
0
)