首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
admin
2019-01-23
40
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+2α
2
+2α
3
,Aα
2
=2α
1
+α
2
+2α
3
,Aα
3
=2α
1
+2α
2
+α
3
.
(1)求A的特征值.
(2)判断A是否相似于对角矩阵?
选项
答案
(1)用矩阵分解: A(α
1
,α
2
,α
3
)=(α
1
+2α
2
+2α
3
,2α
1
+α
2
+2α
3
,2α
1
+2α
2
+α
3
)=(α
1
,α
2
,α
3
)B, 这里B=[*] 从α
1
,α
2
,α
3
线性无关的条件知道,(α
1
,α
2
,α
3
)是可逆矩阵.于是A相似于B. [*] [*]的秩为1,其特征值为0,0,6. 得B的特征值为-1,-1,5.则A的特征值也为-1,-1,5. (2)B是实对称矩阵,一定相似于对角矩阵,由相似的传递性,A也相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/7MM4777K
0
考研数学一
相关试题推荐
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
记曲面z=x2+y2-2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,-2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
设某元件的使用寿命X的概率密度为其中θ>0为未知参数.又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.
证明:当x>0时,(x2一1)lnx≥(x一1)2.
求极限
已知随机变量X的概率密度(I)求分布函数F(x);(II)若令Y=F(X),求Y的分布函数FY(y)·
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
随机试题
下列哪一项不属于尊重宾客的体现()。
可溶性抗原致敏载体,用以检测标本中待测抗体的凝集反应称为
下列不属于甲亢患者单纯性突眼特点的是
5岁患儿因吃不洁食物后突起高热、抽搐、昏迷收入院,确诊为中毒性细菌性痢疾,则其护理要点不包括
对于票据背书,下列说法符合《票据法》规定的有()。
社会治安综合治理的目标包括()。
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量.求矩阵A.
如图1所示,一台Cisco3500系列交换机上连接2台计算机,他们分别划分在VLAN10(ID号为10)和VLAN11(ID号为11)中。交换机千兆以太网端口(g0/1)连接一台路由器,使2个VLAN之间能够通信,交换机管理地址为167.11.45.
Thewordhorsepowerwasfirstusedtwohundredyearsago.JamesWatthadmadetheworld’sfirst【T1】______usedsteamengine.He
A、Hehadtocancelhisinterview.B、He’sdisappointedwithhisinterviewC、Heshouldn’thaveappliedforthejob.D、Hedoesn’tw
最新回复
(
0
)