首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
admin
2018-11-11
82
问题
设函数f(x)在(0,+∞)上二阶可导,且f
’’
(x)>0,记μ
n
=f(n),n=1,2,…,又μ
1
<μ
2
,证明
μ
n
=+∞。
选项
答案
对函数f(x)分别在区间[k,k+1](k=1,2,…,n,…)上使用拉格朗日中值定理μ
2
一μ
1
=f(2)一f(1)=f
’
(ξ
1
)>0,1<ξ
1
<2, …… μ
n-1
一μ
n-2
=f(n一1)一f(n一2)=f
’
(ξ
n-2
),n一2<ξ
n-2
<n一1, μ
n
一μ
n-1
=f(n)一f(n一1)=f
’
(ξ
n-1
),n一1<ξ
n-1
<n。 因f
’’
(x)>0,故f
’
(x)严格单调增加,即有 f
’
(ξ
n-1
)>f
’
(ξ
n-2
)>…>f
’
(ξ
2
)>f
’
(ξ
1
)=μ
2
一μ
1
, 则 μ
n
=(μ
n
一μ
n-1
)+(μ
n-1
—μ
n-2
)+…+(μ
2
一μ
1
)+μ
1
=f
’
(ξ
n-1
)+f
’
(ξ
n-2
)+…+f
’
(ξ
1
)+μ
1
>f
’
(ξ
1
)+f
’
(ξ
1
)+…+f
’
(ξ
1
)+μ
1
=(n一1)(μ
2
一μ
1
)+μ
1
, 于是有[*]=+∞。
解析
转载请注明原文地址:https://kaotiyun.com/show/7Pj4777K
0
考研数学二
相关试题推荐
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T.求方程组(I)的一个基础解系;
设x∈(0,1),证明:(1)(1+x)ln2(1+x)<x2;(2)
已知矩阵A与B相似,其中求x与y;
设某信息台在某一段时间内接到的通话次数服从参数为A的泊松分布,现统计到42个数据如下:由此数据求未知参数λ的最大似然估计值.
求函数z=x4+y4一x2一2xy—y2的极值.
设(X,Y)在区域D={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,事件A={X≤a},B={Y>a}.(1)若P(A∪B)=,求a;(2)设D0为事件A∪B所占的区域,随机地向D投点4次,Z为落入D0内的次数,求E(Z2).
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
写出一个以为通解的齐次线性方程组.
计算二重积分其中D由曲线与直线及围成.
随机试题
眼内异物伤的治疗原则
所谓的有效循环血量是指
截瘫患者利用腋杖步行时,不包括
某路堤的地基土为薄层均匀冻土层,稳定融土层深度为3.0m,融沉系数为10%,融沉后体积压缩系数。为0.3MPa-1,即Es=3.33MPa,基底平均总压力为180kPa,该层的融沉及压缩总量接近()。
依据税法规定从事生产经营的纳税人的财务、会计制度或者财务、会计处理办法,应当报送税务机关()。
要约是只能向特定的人发出的、邀请他人与自己订立合同的意思表示。()
商业银行经营目标的矛盾有()。
三个数16,2n一4,n的算术平均数为a,能确定18≤a≤21。(1)14≤n≤18。(2)13≤n≤17。
Whatdoconsumersreallywant?That’saquestionmarketresearcherswouldlovetoanswer.Butsincepeopledon’talwayssaywhat
Forthispart,youareallowed30minutestowriteashortessayentitledTheImpactofOnlineGamesonCollegeStudents.Youre
最新回复
(
0
)