首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
admin
2018-11-11
94
问题
设函数f(x)在(0,+∞)上二阶可导,且f
’’
(x)>0,记μ
n
=f(n),n=1,2,…,又μ
1
<μ
2
,证明
μ
n
=+∞。
选项
答案
对函数f(x)分别在区间[k,k+1](k=1,2,…,n,…)上使用拉格朗日中值定理μ
2
一μ
1
=f(2)一f(1)=f
’
(ξ
1
)>0,1<ξ
1
<2, …… μ
n-1
一μ
n-2
=f(n一1)一f(n一2)=f
’
(ξ
n-2
),n一2<ξ
n-2
<n一1, μ
n
一μ
n-1
=f(n)一f(n一1)=f
’
(ξ
n-1
),n一1<ξ
n-1
<n。 因f
’’
(x)>0,故f
’
(x)严格单调增加,即有 f
’
(ξ
n-1
)>f
’
(ξ
n-2
)>…>f
’
(ξ
2
)>f
’
(ξ
1
)=μ
2
一μ
1
, 则 μ
n
=(μ
n
一μ
n-1
)+(μ
n-1
—μ
n-2
)+…+(μ
2
一μ
1
)+μ
1
=f
’
(ξ
n-1
)+f
’
(ξ
n-2
)+…+f
’
(ξ
1
)+μ
1
>f
’
(ξ
1
)+f
’
(ξ
1
)+…+f
’
(ξ
1
)+μ
1
=(n一1)(μ
2
一μ
1
)+μ
1
, 于是有[*]=+∞。
解析
转载请注明原文地址:https://kaotiyun.com/show/7Pj4777K
0
考研数学二
相关试题推荐
已知齐次线性方程组(I)又已知齐次线性方程组(Ⅱ)的基础解系为ξ1=(2,一1,a,1)T,ξ2=(一1,0,4,a+6)T,试问当a为何值时,方程组(I)和(Ⅱ)有非零公共解?并求出全部非零公共解.
设A是4×3矩阵,且A的秩r(A)=2,而则r(AB)=__________.
[*]
已知点A与B的直角坐标分别为(1,0,0)与(0,1,1),线段AB绕z轴旋转一周所成的旋转曲面为S,求由S及平面z=0,z=1所围成的立体体积.
试证向量a=一i+3j+2k,b=2i一3j一4k,c=一3i+12j+6k在同一平面上.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求可逆矩阵P,使得P一1AP为对角矩阵.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α1=(a一1,一a,1)T。分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为A*,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0
计算,其中L是由曲线x2+y2=2y,x2+y2=4y,所围成的区域的边界,按顺时针方向.
将函数arctanx一x展开成x的幂级数.
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的
随机试题
Whatisthepurposeofthespeaker?Togivesomeadviceonhowto_________________abookstore.
该病人的诊断是若要清扫淋巴结,下列哪组不是清扫范围
患者,女,22岁。因感冒发热1周后,出现眼痛、流泪和视物模糊:检查可见结膜充血、角膜点状浸润,荧光素着色阳性。最可能的诊断是
交易双方在场外市场上通过协商,按约定价格在约定的未来日期(交割日)买卖某种标的金融资产(或金融变量)的合约是()。
相对于发行股票而言,发行公司债券筹资的优点为()。
一名社会工作者早晨起来发现三岁的女儿发高烧,病情严重。但她丈夫出差在外,眼前也没有合适的人可以照看女儿,而她自己已经提前约了服务对象当天上午要进行一次非常重要的面谈。她应该怎么办?是履行母亲职责,照顾女儿,还是履行工作责任,去见服务对象?社会工作者面对的这
贯彻科学发展观的要求包括()
地球:自转:公转
下列叙述中,错误的一条是______。
Isuddenlyrealizedthathewastryingto______quarrellingwithme.
最新回复
(
0
)