首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P一1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P一1AP为对角矩阵.
admin
2016-01-11
38
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
由题设,有A(α
1
一α
2
)=α
1
一α
2
,A(2α
1
一α
3
)=2α
1
一α
3
,A(α
2
+α
3
)=4(α
2
+α
3
),从而α
1
一α
2
,2α
1
一α
3
是A的属于特征值1的两个特征向量,α
2
+α
3
是A的属于特征值4的特征向量.又α
1
一α
2
,2α
1
一α
3
线性无关,从而α
1
-α
2
,2α
1
-α
3
,α
2
+α
3
线性无关,故P=(α
1
一α
2
,2α
1
-α
3
,α
2
+α
3
)为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/oe34777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设相似.求一个可逆矩阵P,使得P-1AP=B;
设X1,X2,…,Xn为总体X~B(N,p)(0<P<1)的简单随机样本,则P的最大似然估计量=________.
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设随机变量X与Y相互独立,P{X=-1}=P{X=1}=,Y~N(0,1),则概率P{XY≤E(XY)}=________.
设α=(1,a,1)T(a>0)是A-1的特征向量,其中A=,则a=________.
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设a2+b2=1(a≤0,b≥0),求曲线y=x2+ax与直线y=bx所围区域面积S的最大值与最小值.
某工厂有甲、乙两种产品,产量分别为x,y单位,总成本函数为C(x,y)=x2+2xy+3y2+2,若两种产品的销售价格分别为4与8时,产品能全部售出,则该产品能取得的最大利润为________.
设向量a=(1,1,-1)T是的一个特征向量.A是否相似于对角矩阵?说明理由.
随机试题
简述研究事业生涯设计与开发的意义。
A、硝苯地平B、硝酸甘油C、双嘧达莫D、普萘洛尔E、维拉帕米易产生耐受性的抗心绞痛药是()。
[200年第28题]下列哪种措施会造成更强烈的室内照明直接落光?
“进口口岸”栏应填:“起运国(地区)”栏应填:
下列属于项目盈利能力分析指标的有()。
下列选项中属于申请表的主要内容的是()。
仰韶文化以西安半坡遗址最为典型,在其精美的彩陶上有许多刻画符号,它可能是中国原始文字的萌芽。()
再贴现政策是通过增减商业银行资本金来调控货币供应量的。()
计算机病毒在触发之前没有明显的表现症状,一旦触发条件具备就会发作,从而对系统带来不良影响,这称之为病毒的()。
HarryPotter:TheEndIsHere Whatalotofcommotionoverabook.Notsince19th-centuryNewYorkersanxi
最新回复
(
0
)