首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
admin
2014-07-22
52
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且
,证明(1)中的x
0
是唯一的.
选项
答案
(1)令ψ(x)=-x∫
x
1
f(t)dt.则ψ(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且ψ(0)=ψ(1)=0.由罗尔定理知,存在x∫
0
∈(0,1),使ψ’(x∫
0
)=0,即 ψ’(x∫
0
)=x∫
0
f(x(0)-∫
x
0
1
f(t)dt=0, 也即x
0
f(x
0
)=∫
x
0
1
f(x)dx. (2)令F(x)=xf(x)-∫
x
1
(t)dt,则 F’(x)=xf’(x)+f(z)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内严格单调增加,从而F(x)=0的点x=x
0
必唯一,故(1)中的x
0
是唯一的.
解析
[分析](1)要证的结论相当于存在x
0
∈(0,1),使x
0
f(x
0
)=∫x
0
0
f(x)dx,可考虑对辅助函数ψ(x)=xf(x)-∫x
0
0
f(x)dt在闭区间[0,1]上用连续函数的介值定理,但ψ(0)ψ(1)<0是否成立?仅由f(x)是非负连续函数无法推证,可改用微分中值定理,ψ(x)是某函数导数的结果,这只需令 ψ’(x)=xf(x)-∫
x
1
(t)dt,
然后积分得ψ(x)=∫
x
1
f(t)dt,再对其应用罗尔定理即可.
(2)唯一性一般用单调性证明,而这只需证明ψ’(x)定号即可.
[评注] 本题表面上用连续函数的介值定理,而实际上要用微分叶中值定理,其关键又存于构造合适的辅助函数.本题先令
ψ(x)=xf(x)-∫
x
1
f(t)df,
用介值定理无法证明,再改令
ψ(x)=xf(x)-∫
x
1
f(t)dt,
然后通过不定积分,得到所需辅助函数ψ(x)=-x∫
x
1
f(t)dt,这种处理技巧值得注意.
转载请注明原文地址:https://kaotiyun.com/show/7R34777K
0
考研数学二
相关试题推荐
若则
设f′(x)在x=2处连续,且则().
已知求dy.
方程4y"+8y′+3y=0的通解为_____________.
已知f(x)在[a,b](0<a<b)上连续,在(a,b)内可导,且f(a)=f(b)=0.证明至少存在一点ξ∈(a,b),使得ξf′(ξ)一2f(ξ)=0成立.
设y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个解,且=0,(Ⅰ)求y(x),并求y=y(x)到x轴的最大距离;(Ⅱ)计算∫0+∞y(x)dx。
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________。
已知矩阵,若下三角可逆矩阵P和上三角可逆矩阵Q,使PAQ为对角矩阵,则P、Q可以分别取()
设矩阵A=,a为某常数,B为3×4非零矩阵,且AB=0,则r(B)=________。
设微分方程+p(x)y=f(x)有两个特解,则该微分方程的通解为________.
随机试题
改革、发展、稳定的关系是()
Mostofyougraduatingtodaywillbeemployeesallyourworkinglife,workingforsomebodyelseandforapaycheck.Andsowill
消化道肿瘤常用的多标志组合是哪几种标志的组合
脑内多巴胺能神经元胞体的主要部位是
A.5年B.3年C.2年D.1年药品批发企业建立的药品采购、验收、养护、销售、出库复核、销后退回和购进退出、运输、储运温湿度监测、不合格药品处理等相关记录应当至少保存
产品线是指()。
均质细杆AB重力为W,A端置于光滑水平面上,B端用绳悬挂如图4-56所示。当绳断后杆在倒地的过程中,质心C的运动轨迹为()。
测定待测点高程的方法是()。
竣工图的允许误差不得大于图上±()mm。
铁路运输的最大特点是()
最新回复
(
0
)