首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
admin
2014-07-22
58
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且
,证明(1)中的x
0
是唯一的.
选项
答案
(1)令ψ(x)=-x∫
x
1
f(t)dt.则ψ(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且ψ(0)=ψ(1)=0.由罗尔定理知,存在x∫
0
∈(0,1),使ψ’(x∫
0
)=0,即 ψ’(x∫
0
)=x∫
0
f(x(0)-∫
x
0
1
f(t)dt=0, 也即x
0
f(x
0
)=∫
x
0
1
f(x)dx. (2)令F(x)=xf(x)-∫
x
1
(t)dt,则 F’(x)=xf’(x)+f(z)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内严格单调增加,从而F(x)=0的点x=x
0
必唯一,故(1)中的x
0
是唯一的.
解析
[分析](1)要证的结论相当于存在x
0
∈(0,1),使x
0
f(x
0
)=∫x
0
0
f(x)dx,可考虑对辅助函数ψ(x)=xf(x)-∫x
0
0
f(x)dt在闭区间[0,1]上用连续函数的介值定理,但ψ(0)ψ(1)<0是否成立?仅由f(x)是非负连续函数无法推证,可改用微分中值定理,ψ(x)是某函数导数的结果,这只需令 ψ’(x)=xf(x)-∫
x
1
(t)dt,
然后积分得ψ(x)=∫
x
1
f(t)dt,再对其应用罗尔定理即可.
(2)唯一性一般用单调性证明,而这只需证明ψ’(x)定号即可.
[评注] 本题表面上用连续函数的介值定理,而实际上要用微分叶中值定理,其关键又存于构造合适的辅助函数.本题先令
ψ(x)=xf(x)-∫
x
1
f(t)df,
用介值定理无法证明,再改令
ψ(x)=xf(x)-∫
x
1
f(t)dt,
然后通过不定积分,得到所需辅助函数ψ(x)=-x∫
x
1
f(t)dt,这种处理技巧值得注意.
转载请注明原文地址:https://kaotiyun.com/show/7R34777K
0
考研数学二
相关试题推荐
若则f(x)=___________.
3因为3n≤2n+3n≤2·3b,所以
若求证:f(x)=sinx+xcosx.
求极限
e-6
设函数f(x)在[0,1]上可导,f′(x)>0并且f′(0)<0,f(1)>0,则f(x)在(0,1)内().
求解不定积分
设f(x)在[a,b]上连续,在(a,b))内可导(0≤a<b≤π/2)。证明:存在ζ,η∈(a,b),使得。
设A为三阶矩阵,为非齐次线性方程组AX=的解,则()。
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax1x3+2ax2x3,a为正整数。(1)若f(x1,x2,x3)是正定二次型,求a的值;(2)求正交变换x=Qy,使二次型f(x1,x2,x3)化为标准形
随机试题
下述关于二尖瓣关闭不全患者早期病理生理改变的叙述,正确的是
肾病综合征时可伴哪些血浆蛋白成分下降
诊断中央型肺癌,MRI在哪一方面不如CT
A、气随血脱B、气虚出血C、气血两虚D、瘀血出血E、气滞血瘀患者晨起后突然呕吐不止,面色苍白,四肢厥冷,脉微欲绝。其证型是
引起水体富营养化的原因主要是水中含有过高的
力F1、F2、F3、F4分别作用在刚体上同一平面内的A、B、C、D四点,各力矢首尾相连形成一矩形如图示,该力系的简化结果为()。
()应当在规划草案上报审批前,提出环境影响篇章或说明。
下列关于证券发行承销团承销证券的表述中,不符合证券法律制度规定的是()。
Ascientistwhowantstopredictthewayinwhichconsumerswillspendtheirmoneymuststudyconsumerbehavior.Hemust(1)_____
A、Theywillfindoutwhatitspeoplelike.B、Theywillknowhowtoliveinanotherway.C、Theywillknowthecountryanditspeo
最新回复
(
0
)