首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
admin
2021-04-16
69
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
,α
2
是对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解是( )
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+(1/2)(β
1
-β
2
)
B、k
1
α
1
+k
2
(β
1
+β
2
)+(1/2)(β
1
-β
2
)
C、k
1
α
1
+k
2
(β
1
-β
2
)+(1/3)(β
1
+2β
2
)
D、k
1
α
1
+k
2
(α
1
-α
2
)+(1/3)(β
1
+2β
2
)
答案
D
解析
因为β
1
+β
2
是对应齐次线性方程组Ax=0的解,所以根据非齐次线性方程组的通解结构定理,显然应排除选项A和B。
又β
1
-β
2
与α
1
可能线性相关,例如,β
1
=β
2
+α
1
与β
2
是非齐次线性方程组Ax=b的两个不同的解,但β
1
-β
2
=α
1
,所以仍由非齐次线性方程组的通解结构定理,应排除选项C,故选D。
必须指出,我们也可直接分析选项D,由于α
1
,α
2
是Ax=0的基础解系,易知α
1
,α
1
-α
2
线性无关,因而也是Ax=0的基础解系,又因为(1/3)(β
1
+2β
2
)为Ax=b的解,所以D为正确选项。
转载请注明原文地址:https://kaotiyun.com/show/Cpx4777K
0
考研数学三
相关试题推荐
求证f(x)=πx(1一x)cosπx一(1—2x)sinπx>0当x∈时成立.
的渐近线的条数为().
设微分方程=2y—x,在它的所有解中求一个解y=y(x),使该曲线y=y(x)与直线x=1,x=2及x轴围成的图形绕z轴旋转一周所生成的旋转体体积最小.
已知.A*是A的伴随矩阵,则=________.
设A为三阶实对称矩阵,ξ1=为方程组AX=0的解,ξ2=为方程组(2E—A)X=0的一个解,|E+A|=0,则A=.
设随机事件A与B为对立事件,0<P(A)<1,则一定有
设X,Y为两个随机变量,若对任意非零常数a,b有D(aX+bY)=D(aX一bY),下列结论正确的是().
若f”(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x—t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
随机试题
A.前路开眶术经皮肤切口B.前路开眶术经结膜切口C.前路开眶术外眦切开,可经下穹窿结膜切口D.Stallard切口E.Berke切口
某女,左委中穴处木硬肿痛,小腿屈伸困难,行动不利,身热纳呆,脉濡数,治疗宜选
我国统计调查制度由()组成。
项目可行性研究中的初步可行性研究工作的性质是________。
新中国成立后,中国共产党把独立自主、自力更生运用到外交领域和经济建设方面,形成的方针、政策是:
养痈:成患
我国最早的地理学著作《禹贡》,实际上产生于战国后期,但对历史地理现象的注意和记录在更早的著作中已可找到例证。成书于公元1世纪的《汉书.地理志》既是一篇内容丰富的当代地理著作,也堪称中国第一篇历史地理著作,因为它所记述的对象不限于西汉一朝,而是“采获旧闻,考
[A]Convincingevidence;USislosingitsappealintheeyesofmultinationals[B]Biggesthindrance:USdividedpoliticalsystem
在VisualFoxPro中,查询设计器和视图设计器很像,如下描述正确的是
有以下程序#include<stdio.h>#include<string.h>structS{charname[10];};voidchange(structS*data,intvalue){
最新回复
(
0
)